
1

Eloquence

Eloquence Dialog Manual

B.06.32
Edition E1202

© Copyright 2002 Marxmeier Software AG.

2

Legal Notices

Legal Notices

The information contained in this document is subject to change without notice.

MARXMEIER SOFTWARE AG MAKES NO WARRANTY OF ANY KIND
WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. Marxmeier Software AG shall not be liable for
errors contained herein or for incidental or consequential damages in connection
with the furnishing, performance or use of this material.

This document contains proprietary information which is protected by copyright.
All rights reserved. Reproduction, adaptation, or translation without prior written
permission is prohibited, except as allowed under the copyright laws

Restricted Rights Legend

Use, duplication, or disclosure by the U.S. Government is subject to restrictions as
set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013. Rights for non-DOD U.S. Government
Departments and Agencies are as set forth in FAR 52.227-19 (c) (1,2).

Acknowledgments

© Copyright Marxmeier Software AG 2002. All Rights Reserved.

Marxmeier Software AG
Besenbruchstrasse 9
42285 Wuppertal
Germany

Eloquence is a trademark of Marxmeier Software AG in the US and other coun-
tries.

© Copyright Hewlett-Packard Company 1990-2002. All Rights Reserved.

This software and documentation are based in part on HP software and documen-
tation under license from Hewlett-Packard Company. HP is a trademark of
Hewlett-Packard Company.

3

Printing History

Printing History

The manual printing date indicates its current edition. The printing date will change
when a new edition is printed. Minor changes may be made at reprint without
changing the printing date. New editions are complete revisions of the manual.The
dates on the title page change only when a new edition or a new update is pub-
lished.

Manual updates may be issued between editions to correct errors or document
product changes. Manuals that are published on the Eloquence website (www.hp-
eloquence.com/doc) may be updated more often, please visit this website periodi-
cally for the most recent versions. To ensure that you receive the updated or new
editions, you should also subscribe to the appropriate product support service.

The software code printed alongside the date indicates the version level of the soft-
ware product at the time the manual or update was issued. Many product updates
and fixes do not require manual changes and, conversely, manual corrections may
be done without accompanying product changes. Therefore, do not expect a one to
one correspondence between product updates and manual updates.

Printed in the Federal Republic of Germany.

First Edition A.04.00

Second Edition January 1997 A.06.00

Third Edition October 1997 A.06.00

Fourth Edition (E1202) December 2002 B.06.32

4

Printing History

Contents

5

1 Eloquence Dialog System . 7

Overview . 9

Object Path . 10

Attributes . 12

Object Classes . 18

API (Application Programming Interface) 36

2 Eloquence ASCII Windows 39

Dialog Resource File . 40

Keyboard Usage . 44

Help Subsystem . 45

Helpfile Format . 47

FRM2DLG conversion utility 51

Error Messages . 52

3 Eloquence Graphical User Interface 53

Overview . 54

Eloquence Dialog Drivers . 56

Driver Reference . 59

Dialog Definitions File . 69

Contents

6

On-line Help . 77

The Remote Exec Utility . 83

The CVDLG Utility . 86

Advanced Dialog Manager usage 89

7

1

Eloquence Dialog System

Eloquence provides two Dialog Systems. The semigraphical one, based on “Curses”,
which runs on Terminals and on PC Terminalemulators. This one is integrated in Elo-
quence. The graphical user intrface uses the ISA Dialog Manager runtime library and sup-
ports the Windows and Motif platform. This manual covers both user interfaces and so the
manual is splited into three parts: - the common parts of both systems - semigraphical spe-
cials - graphical specials

8

Eloquence Dialog System

Both Dialog Systems consist of two parts each. A runtime and a development system. The
runtime system is controlled via the DLG API. It can create and manipulate the dialog by
executing commands getting from the API, or creating a dialog by reading a definitions-
file. The ASCII DLG runtime system is included in Eloquence, exactly in the “eloqcore”
program. The DM runtime system can be a separat program, if running on a client system.
The definitionsfile has to be created with the development system. The ASCII DLG devel-
opment system is simply a text editor. The Dialog Manager provide a graphical editor to
create the definitionsfile. This file is also an plain text file, so it can be created and main-
tained with an text editor, too.

9

Eloquence Dialog System
Overview

Overview

A dialog consists of objects within a window.

Objects are elements with pre-defined characteristics. The functionality of an
object is defined by the class (type) to which it belongs. An object has attributes
(variables) which control its functionality within a pre-defined range. Attributes
depend on the object class.

10

Eloquence Dialog System
Object Path

Object Path

The objects of a dialog are linked hierarchically, according to the visual hierarchy.

Each object has a name. The name may consist of upper and lower-case letters,
numbers, and the “_” character. The name is not case-sensitive.

In order to reference (access) an object you must specify its path.

The object path is always unique.

Example:

The following dialog contains a statictext, a groupbox with two radiobuttons, and
a pushbutton.

The internal structure reflects the visual hierarchy:

• In the dialog window there are three objects: a statictext, a groupbox and a pushbutton

• In the group box there are two objects: two radio buttons

11

Eloquence Dialog System
Object Path

The object path precisely expresses this hierarchy.

Dialog.Group.Radio1 is thus the path for the radiobutton “Radio1” in the group-
box “Group” in the dialog “Dialog”.

12

Eloquence Dialog System
Attributes

Attributes

An object has attributes (variables) which control its functionality within a pre-
defined range. Attributes depend on the object class. Attributes can be set and
requested (get).

In order to reference an attribute, its name is appended to the object path separated
by a period. Attribute names are not case-sensitive.

e.g. Dialog.Group.Radio1.ACTIVE

references the attribute ACTIVE of the object Radio1, which is in the groupbox
“Group” in the dialog named “Dialog”.

Attribute Types

Attributes are of different data types, depending on the type of information:

• String - character string (terminated by \0)

• Integer

• Boolean - 0 (=no, off, False), 1 (=yes, on, True)

• Any - string or integer

There are two groups of attributes.

• Base attributes - These attributes are available to all objects.

• Class-specific attributes - Each class defines additional attributes only available to ob-
jects of this class.

Base Attributes

The base attributes are available for all objects.

class Attribute

The class attribute returns the class name of the referenced object. It is set implic-
itly when the object is created and cannot be modified.

x, y Attribute

x, y define the position of the upper left corner of the object relative to its parent
object, except for the root object (dialog) which is relative to the screen.

13

Eloquence Dialog System
Attributes

w, h Attribute

w, h define the object width and height. Note that all objects are clipped by the
parent size. w and h must be greater than zero, otherwise the object is invisible.

The fgc, bgc Attributes

This Attribute has different meanings in ASCII as in Dialog Manager.

In ASCII it defines an display enhancement, because here are no colors available.

In Dialog Manager colors can be defined and selected with this two Attributes.

.fgc Define dialog-object “foreground” enhancements or colors

.bgc Define dialog-object “background” enhancements or colors

In SSCII DLG both attributes accept a numerical argument, which specifies the
enhancement by an additive value:

0 use default enhancement
+2 blinking video
+4 underline video
+8 half-bright video

A value of 16 will disable default enhancements.

For example:

 DLG SET "Dialog.EditText.fgc",9

will cause the addressed EditText to be displayed reverse/half bright video instead
of the default underline enhancement.

For example:

 DLG SET "Dialog.EditText.fgc",Input

will cause the addressed EditText to be displayed in the color befined by “Input”.

visible Attribute

The visible attribute defines if an object is visible or not. Note that an object is
only visible if its parent object is visible.

sensitive Attribute

The sensitive attribute defines whether the object may receive the keyboard focus.
This attribute is ignored for all object classes which do not provide keyboard sup-
port.

rule Attribute

14

Eloquence Dialog System
Attributes

The rule attribute is of type integer, and can have any value. The value of the rule
attribute affects the dialog handling. The rule attribute serves several purposes,
depending on the value and object class:

• If the object class is PushButton and the object is “executed”, the dialog will be sus-
pended, returning the rule value. If the rule value is set to -1, the help subsystem will
be called instead.

• If the object class is CheckBox, RadioButton or ListBox and the object is “executed”,
and the rule value is non-zero, the dialog will be suspended, returning the rule value. If
the rule value is set to -1, the help subsystem will be called instead.

• In all other cases, if the focus will be moved from an object with a non-zero rule value,
the dialog will be suspended, returning the rule value.

focus Attribute

The focus attribute will serve a dual purpose. If retrieved it will return non-zero if
the object has the keyboard focus. If set, it will force the setting of the keyboard
focus to the specified object, its children or the next available object, whatever is
available first.

So you may specify focus for parent object and the first child is selected.

focusobj

NOTE: This attribute is not available with Dialog Manager.

It can be read only and returns the Objectpath of the object which has the focus
currently.

The kbind Attribute

NOTE: This attribute is not available with Dialog Manager.

It makes it possible to override the default keyboard handling for a specific object
by assigning a rule for a key value.

For example:

The following statement assigns a rule value of 103 for a PageDown key (which
has a key code of 338):

 DLG SET "Object.kbind[338]",103

15

Eloquence Dialog System
Attributes

NOTE: The EloquenceKBCODE statement displays the code for a given key.
It is not recommended to make frequent use of the kbind attribute since this may lead to
confusion due to nonstandard keyboard behavior.

The kbind attribute affects the actual object and its child objects. If you define a
kbind attribute for a GroupBox, it is also active for all child objects. A different
definition in a child object has priority over a parent definition.

The following GET and SET operations on the kbind attribute are defined:

• If a zero is assigned to a kbind attribute or a kbind attribute with index zero, all key as-
signments are removed. For example:

 DLG SET "Object.kbind",0
 DLG SET "Object.kbind[0]",0

• If a zero value is assigned to a kbind index, the specified key assignment will be re-
moved. For example:

 DLG SET "Object.kbind[338]",0

• If a nonzero value is assigned to a kbind index, the specified key will be assigned with
the given rule value. For example:

 DLG SET "Object.kbind[338]",103

• The value returned by a kbind attribute or a kbind attribute with an zero index is the
number of kbind assignments. For example:

 DLG GET "Object.kbind",N
 DLG GET "Object.kbind[0]",N

• The value returned by a kbind attribute with an index N is the Nth key assignment. For
example:

 DLG GET "Object.kbind[1]",N

The following example program will demonstrate the various DLG GET/SET
operations on the kbind attribute:

 DLG SET "Object.kbind",0 ! Clear all key assignments
 DLG SET "Object.kbind[65]",20 ! ’A’ returns 20
 DLG SET "Object.kbind[32]",21 ! space returns 21

 DLG GET "Object.kbind",Nkeys ! Get number of values
 DISP "Nkeys=";Nkeys

 FOR I=1 TO Nkeys ! Get all values
 DLG GET "Object.kbind["&VAL$(I)&"]",K
 DISP "kbind["&VAL$(I)&"]=";K
 NEXT I

The following keys can not be reassigned, because they are processed internally:

• TheESC key (27)

16

Eloquence Dialog System
Attributes

• TheBREAK key (0) and thêY key (25)
• The^L key (12)
• The^N key (14)
• TheInsert key (331)
• The key assigned to the alt attribute.

help Attribute

The help attribute may hold a string used by the help subsystem to identify the
section in the helpfile.

udata Attribute

The udata (”user data”) attribute is used to store a value of any data type. If you
need to assign your own information to an object (e.g. to validate data entry) you
may use the udata attribute.

first, next Attribute

The first, next attributes are not regular attributes like the ones described above.
The .first attribute returns the first dialog name when used without an object name.
If an object name is provided, it returns the first child object name for the given
object.

The .next attribute returns the next dialog name when used without an object
name. If an object name is provided, it returns the next object name.

An empty string is returned if requested information is not available (e.g., no child
or last object).

alt Attribute

NOTE: This attribute is not available with Dialog Manager.

The alt attribute is only available for the Dialog Object. If it is nonzero, it is the
key number of the key to be used as anALT key in this dialog. The alt attribute
must be defined in order to enable keyboard accelerators in the dialog (see below).

With Dialog Manager the “Alt”-Key is used to work with keyboard accelarators.

Keyboard Accelerators

If a '&' character is contained in the label text of a StaticText, CheckBox,
RadioButton or PushButton object type, the following character will be displayed
underlined and used as a keyboard accelerator.

17

Eloquence Dialog System
Attributes

NOTE: If you want to display a “&” in a StaticText of an ASCII DLG Dialog, you must not define
the alt attribute. In a Dialog Manager Dialog you have to define three “&” to display an
“&”.

If the alt attribute is enabled in the dialog, pressing the ALT key (In ASCII DLG:
specified by the alt attribute) and a keyboard accelerator, causes the focus to
change to the first object defining the accelerator key.

If the object type is StaticText, keyboard focus is changed to the next object in Tab
order. If the object type is of type CheckBox, RadionButton or PushButton, the
object is selected.

If pressing a key which is not accepted by the current object (the object which has
the focus), it will be used as an accelerator.

For example, pressing an alphanumeric key while the current object is of type
PushButton will cause an accelerator lookup.

Example for an ASCII DLG dialogfile:

 Dialog Sample {
 ...
 .alt = 266 # Alt key is F2

 StaticText Label1 {
 ...
 .text = "Label &1"
 }
 EditText Edit {
 ...
 }
 PushButton OK {
 ...
 .text = "&OK"
 }
 }

Pressing the keys F2 and 1 will change the focus to the EditText “Edit”. Pressing
the keys F2 and O will trigger the PushButton “OK”.

18

Eloquence Dialog System
Object Classes

Object Classes

On the following pages, the different object classes of the ASCII DLG are
defined. All additional Objects of the Dialog Manager are defined in the Dialog
MAnager Manual.

The definition contains information on whether the objects of this object class can
have the cursor focus and whether it can have children or not. Then all attributes
which are available for this object class are described, together with their data
types, their default values and whether the attribute values can be set and/or
requested (get).

Accessing Dialog Manager Objects

Eloquence only knows about a subset of Dialog Manager objects and attributes as
necessary to translate Eloquence DLG to Dialog Manager.

In order to enable access to Dialog Manager objects and attributes not available in
Eloquence DLG there is a “bypass option” implemented in Eloquence.

If you use an exclamation mark (’! ’) instead of a dot (’. ’) as a separator between
object path and attribute, no mapping will be performed. Instead, thenative Dia-
log Manager objects and attributes are accessed.

Two examples ofnative Dialog Manager objects aremenubar andmenuitem. An
example of anative Dialog Manager attribute is theformat attribute ofedittext
objects:

 DLG SET "MyWindow.Edit!format","%8'3,02sf/1"

This will set the field format of theedittext object namedEdit.

Dialog Object

The root object of a dialog must always be of class Dialog. All other objects have
to be generated in a dialog. The dialog is an optical frame for other objects. The
coordinates are interpreted as relative to the screen.

Class name: Dialog

Focus : No

Children : Yes

Attributes:

19

Eloquence Dialog System
Object Classes

The .x and .y attributes define the position of the upper left corner of the object.
These values are relative to the screen for the Dialog object class.

Name Type G/S Default value

.class Strg G Dialog

.x Int G/S 0

.y Int G/S 0

.w Int G/S 0

.h Int G/S 0

.visible Bool G/S True

.sensitive Bool G/S False

.rule Int G/S 0

.focus Bool G/S False

.help Strg G/S

.udata Any G/S

.title Strg G/S

.border Int G/S 3

.f1 Int G/S -1

.f2 Int G/S 0

.f3 Int G/S 0

.f4 Int G/S 0

.f5 Int G/S 0

.f6 Int G/S 0

.f7 Int G/S 0

.f8 Int G/S 0

.cr Int G/S 0

20

Eloquence Dialog System
Object Classes

The .border attribute defines the type of the border. The following values are sup-
ported:

0 no border

1 thin border

2 thick border

3 shadow border

4 reverse shadow border

The .f1…f8 attributes assign values to the function keysF1 ..F8. If a non-zero
value is assigned to a function key, and this function key is pressed, the dialog is
suspended, returning the appropriate f1 .. f8 attribute value and the object path
where the focus was set. If the assigned value is -1 and the function key is pressed,
the help subsystem is started.

If not specified, function keys are ignored except for f1, which calls the help sub-
system.

The .cr attribute assigns a value to theReturn key. If the value is non-zero and the
Return key is pressed, the dialog is suspended, returning the appropriate cr
attribute value and the object path where the focus was set. The default behaviour
of theReturn key is to move the focus to the next object.

Groupbox Object

A groupbox is used to group objects together. If you move the groupbox, all
objects in this group are moved.

Class name: GroupBox

Focus : No

Children : Yes

Attributes:

Name Type G/S Default value

.class Strg G GroupBox

.x Int G/S 0

.y Int G/S 0

21

Eloquence Dialog System
Object Classes

The .title attribute provides a text, which is placed in the top line of the groupbox
object.

If a GroupBox is not sensitive, all of its child-objects are insensitive, too (they can
not get the keyboard focus). A GroupBox is sensitive by default.

The .border attribute defines the type of the border. The following values are sup-
ported:

0 no border

1 thin border

2 thick border

3 shadow border

4 reverse shadow border

StaticText Object

A statictext is used to place text in the dialog.

Class name: StaticText

Focus : No

Children : No

.w Int G/S 0

.h Int G/S 0

.visible Bool G/S True

.sensitive Bool G/S False

.rule Int G/S 0

.focus Bool G/S False

.help Strg G/S

.udata Any G/S

.title Strg G/S

.border Int G/S 1

Name Type G/S Default value

22

Eloquence Dialog System
Object Classes

Attributes:

The .text attribute contains the displayed string.

If the .w attribute is not specified, it will default to the text length set initially.

PushButton Object

A pushbutton is used for making decisions. Dialogs are generally suspended (ter-
minated) and the control returned to the application by pressing a pushbutton.

Class name : PushButton

Focus : Yes

Children : No

Keyboard usage:

UseSpacebar orReturn to “execute” a pushbutton.

Attributes:

Name Type G/S Default value

.class Strg G StaticText

.x Int G/S 0

.y Int G/S 0

.w Int G/S length of text

.h Int G/S 1

.visible Bool G/S True

.sensitive Bool G/S False

.rule Int G/S 0

.focus Bool G/S False

.help Strg G/S

.udata Any G/S

.text Strg G/S

23

Eloquence Dialog System
Object Classes

The .text attribute contains the string.

If .w attribute is not specified, it will default to the text length set initially.

If the .h attribute is equal to or greater than 3, the pushbutton is framed.

If the .rule attribute is set to -1, the pushbutton acts as a HELP button. The help
subsystem is called with the text defined in the .help attribute as indicator to the
helpfile.

CheckBox Object

A checkbox is an object with the activation states “on” or “off”.

Class name: CheckBox

Focus : Yes

Children : No

Name Type G/S Default value

.class Strg G PushButton

.x Int G/S 0

.y Int G/S 0

.w Int G/S length of text

.h Int G/S 1

.visible Bool G/S True

.sensitive Bool G/S True

.rule Int G/S 0

.focus Bool G/S False

.help Strg G/S

.udata Any G/S

.text Strg G/S

.border Int G/S 1

24

Eloquence Dialog System
Object Classes

If the object is active, an ’X’ will be displayed in front of its text, when working
with ASCII DLG.

Keyboard usage:

UseSpacebar to switch the state.

Attributes:

The .text attribute contains the string.

If .w attribute is not specified, it will default to the text length set initially.

The .active attribute contains the state of the checkbox.

If the .rule attribute is non-zero and the object state has been changed, the dialog
is suspended and the rule value will be returned. If the .rule attribute is -1, the help
subsystem will be called instead.

Name Type G/S Default value

.class Strg G CheckBox

.x Int G/S 0

.y Int G/S 0

.w Int G/S length of text

.h Int G/S 1

.visible Bool G/S True

.sensitive Bool G/S True

.rule Int G/S 0

.focus Bool G/S False

.help Strg G/S

.udata Any G/S

.text Strg G/S

.active Bool G/S False

25

Eloquence Dialog System
Object Classes

RadioButton Object

A radiobutton is an object with the activation states “on” or “off”. In contrast to
the checkbox, a radiobutton is used to make a single selection from a group of
options. If the object is active and the ASCII DLG system is used, a ‘*’ will be
displayed.

Class name: Radiobutton

Focus : Yes

Children : No

Keyboard usage:

TheSpacebar is used to set the current radiobutton. All other radiobuttons in the
same hierarchy level are switched off.

Attributes:

The .text attribute contains the string.

Name Type G/S Default value

.class Strg G RadioButton

.x Int G/S 0

.y Int G/S 0

.w Int G/S length of text

.h Int G/S 1

.visible Bool G/S True

.sensitive Bool G/S True

.rule Int G/S 0

.focus Bool G/S False

.help Strg G/S

.udata Any G/S

.text Strg G/S

.active Bool G/S False

26

Eloquence Dialog System
Object Classes

If .w attribute is not specified, it will default to the text length set initially.

The .active attribute contains the state of the radiobutton. If a radiobutton
becomes active, all other radiobuttons in the same hierarchy level will become
inactive. If you have more than one group of radiobuttons, you have to put each
group into a groupbox.

If the .rule attribute is non-zero and the object state has been changed, the dialog
is suspended and the rule value will be returned. If the .rule attribute is -1, the help
sub-system will be called instead.

27

Eloquence Dialog System
Object Classes

EditText Object

An edittext is a text which can be modified interactively. It can be single-line or
multi-line. It can be scrolled horizontally, and vertically if multi-line.

Class name: EditText

Focus : Yes

Children : No

Keyboard usage:

Home,Shift + Home,Cursor Left,Cursor Right can be used for editing within a
single-line edittext. ,

Additionally, in a multi-line edittext or a listbox object, the following keys can be
used:Page Up,Page Down,Cursor Up,Cursor Down.

EditText is set to overwrite mode by default. You may toggle overwrite/insert
mode using theINSERT key. The cursor form will change to indicate insert/over-
write mode.

Attributes:

Name Type G/S Default value

.class Strg G EditText

.x Int G/S 0

.y Int G/S 0

.w Int G/S 0

.h Int G/S 1

.visible Bool G/S True

.sensitive Bool G/S True

.rule Int G/S 0

.focus Bool G/S False

.help Strg G/S

.udata Any G/S

.length Int G

28

Eloquence Dialog System
Object Classes

The .editable attribute specifies if the object may be edited. You can change this
attribute at any time.

The EditText object class distinguishes two different modes.

• single-line mode

.content Strg G/S

.editable Bool G/S True

.multiline Bool G/S False

.border Int G/S 1

.title Strg G/S

.hsb Bool G/S True

.vsb Bool G/S True

.maxchars Int G/S

.maxlines Int G/S

.vheight Int G

.vwidth Int G

.cx Int G/S

.cy Int G/S

.line Strg G/S

.file Strg S

.clear Any S

.add Strg S

.topitem Int S

.writefile Strg S

.ins Strg S

.delln Int S

Name Type G/S Default value

29

Eloquence Dialog System
Object Classes

• multi-line mode

This is defined by the .multiline attribute.

Single-Line

The following attributes have no effect in single-line mode.

• border and title

• hsb and vsb (horizontal and vertical scrollbar)

• maxlines

The EditText object class provides a single line which can be scrolled horizon-
tally. With ASCII DLG a ’<’ or ’>’ mark indicates that the text is scrolled to the
left or right side out of view.

Multi-Line

If the .multiline attribute is non-zero, a window with horizontal/vertical scrollbars
is displayed.

The .maxlines and .maxchars attributes specifiy how many characters or lines are
accepted.

The .hsb and .vsb attributes indicate whether a horizontal or vertical scrollbar
should be provided to indicate the position and the relation of the visible part of
the text to the whole.

Without an index, the .line attribute will get or set the line as indicated by the cy
attribute. If an index is specified, the specified line is get or set. The first line is
specified by 1.

The .title attribute provides a text which is placed in the top line of the object.

NOTE: The title attribute is not available with Dialog Manager

The .border attribute specifies whether a border should be placed around the
object. The following values are supported:

0 no border

1 thin border

2 thick border

3 shadow border

4 reverse shadow border

30

Eloquence Dialog System
Object Classes

The .content attribute contains the text. Lines are separated by a (newline, lf) char-
acter. They can also be set or requested using a string array.

The .length attribute returns the number of characters of the text.

The .vwidth and .vheight attributes return the number of lines and the length of
the widest line of the text.

The .cx and .cy attributes define the cursor position.

The .line attribute contains the text of the line where the cursor is positioned.

For example:

 DLG SET "Edit.line[12]","Text"

The .clear, .file and .add attributes are not regular attributes. They perform a spe-
cific operation on the object:

• The .clear attribute accepts any kind of value and clears the whole text.
• The .add attribute adds a line of text to the object.
• The .file attribute reads the specified file into the object.

NOTE: When the Dialog Manager runtime is running on a remote machine, the file has to be
accessible on that machine.

The writefile attribute is of type string. It specifies a file name, where the contents
of the EditText are written to.

Using this attribute, you can write your own Text Editor very simply:

DLG SET "dialog.edit.file","/tmp/text" ! read file
DLG DO "dialog",R ! handle dialog
DLG SET "dialog.edit.writefile","/tmp/text.new" ! write file

NOTE: When the Dialog Manager runtime is running on a remote machine, the file will be created
on that machine.

If the .rule attribute is non-zero, and if the focus has changed, the dialog is sus-
pended and the rule value is returned.

The .topitem attribute indicates the first visible line in an EditText. When set, the
EditText is scrolled appropriately.

NOTE: The topitem attribute is not available with Dialog Manager

The .ins attribute is of type string. It inserts the given string at the current cursor
position.

31

Eloquence Dialog System
Object Classes

The .delln attribute is of type integer. It deletes the given number of lines starting
at the cursor line.

ListBox Object

A listbox contains a dynamic list of text elements from which one text element
can be selected.

Class name: ListBox

Focus : Yes

Children : No

Keyboard usage:

TheSpacebar is used to select/deselect a listbox entry which is then displayed
reversed if selected. You may use the cursor keys to navigate inside the listbox.

Attributes:

Name Type G/S Default value

.class Strg G ListBox

.x Int G/S 0

.y Int G/S 0

.w Int G/S 0

.h Int G/S 0

.visible Bool G/S True

.sensitive Bool G/S True

.rule Int G/S 0

.focus Bool G/S False

.help Strg G/S

.udata Any G/S

.length Int G

.content Strg G/S

.multiline Bool G/S True

32

Eloquence Dialog System
Object Classes

The ListBox object class allows you to display and select a single value.

The .activeline attribute contains the number of the selected line. A zero means
that no line has been selected.

If the .rule attribute is non-zero and the focus attribute has been changed, the dia-
log is suspended and the rule value is returned. If the rule value is set to -1, the
help subsystem will be called instead.

The .topitem attribute indicates the first visible line in a ListBox.

When set, the ListBox is scrolled appropriately.

NOTE: This attribute is not available with Dialog Manager.

The ins attribute is of type string. It inserts the given string before the current line.

.border Int G/S 1

.title Strg G/S

.hsb Bool G/S True

.vsb Bool G/S True

.vheight Int G

.vwidth Int G

.cy Int G/S

.line Strg G/S

.activeline Int G/S

.file Strg S

.clear Any S

.add Strg S

.topitem Int S

.ins Strg S

.delln Int S

Name Type G/S Default value

33

Eloquence Dialog System
Object Classes

NOTE: ListBox always inserts complete lines.

The delln attribute is of type integer. It deletes the given number of lines starting
at the cursor line.

The ListBox object type supports an additional index specified for the line
attribute.

Without an index, the line attribute will get or set the line as indicated by the cy
attribute. If an index is specified, the specified line is got or set. The first line is
specified by 1.

For example:

 DLG SET "List.line[12]","Text"

NOTE: This attribute is not available with Dialog Manager

All other attributes are the same as for the EditText object class.

34

Eloquence Dialog System
Object Classes

HelpText Object

The helptext object class is used to realize the online help system. It is similar to
the EditText object class, but has some special properties.

NOTE: This object is not available with Dialog Manager.

Class name: HelpText

Focus : Yes

Children : No

Attributes:

Name Type G/S Default value

.class Strg G Helptext

.x Int G/S 0

.y Int G/S 0

.w Int G/S 0

.h Int G/S 0

.visible Bool G/S True

.sensitive Bool G/S True

.rule Int G/S 0

.focus Bool G/S False

.help Strg G/S

.udata Any G/S

.border Int G/S 1

.title Strg G/S

.hsb Bool G/S True

.vsb Bool G/S True

.file Strg G/S

.topic Strg G/S

35

Eloquence Dialog System
Object Classes

The .file attribute specifies the help file to use.

The .topic attribute specifies the current help tag.

The .forw and .backw attributes specify the next/previous help tags.

The .link attribute specifies the currently selected text reference.

This object will be maintained automatically by the DLG HELP statement and the
help subsystem.

See Discussion on help below.

.forw Strg G

.backw Strg G

.link Strg G

Name Type G/S Default value

36

Eloquence Dialog System
API (Application Programming Interface)

API (Application Programming Interface)

This section describes the Eloquence statements which allow access to dialog
window functionality.

All statements begin with DLG for DIALOG. A return variable can be specified
for each statement. If a return variable is present, a run-time error specific to the
dialog system does not lead to an Eloquence run-time error. Instead, the return
variable will contain the corresponding error number.

DLG STOP

Syntax:

 DLG STOP

DLG STOP has the same effect on the dialog system as the STOP statement on
the Eloquence program execution. All windows are closed and all dialogs deleted.

DLG STOP is executed automatically when the Eloquence program terminates.

DLG LOAD

Syntax:

 DLG LOAD “File Name” [;Rv]

DLG LOAD reads the corresponding Dialog Resource file and generates the dia-
logs defined in it. For the syntax specifications of Dialog Reaource files see chap-
ter , Dialog Resource File,

The DLG LOAD statement checks the syntax of the dialog file and reports a self
explaining error message to the screen, if it is executed interactively.

For example:

 DLG LOAD "dialog.dlg"
 LINE #5: DLG NEW "Test.select","Lisrbox" faile

DLG NEW

Syntax:

 DLG NEW “ObjectPath”,” ClassName” [;Rv]

37

Eloquence Dialog System
API (Application Programming Interface)

The DLG NEW statement creates an dialog object dynamically.

You have to specify the object path and an object type.

It’s also possible to specify an object path instead of the object type. The specified
object and all it's children are copied to the given target path.

With this functionality you are able to useModels in your dialogs. For more infor-
mation about Models in ASCII DLG see chapter , Using Models, more informa-
tion concerning Dialog Manager Models, see the Dialog Manager Manual.

DLG DEL

Syntax:

 DLG DEL “ObjectPath” [;Rv]

DLG DEL deletes the specified object and all its children.

DLG SET

Syntax:

 DLG SET “ObjectPath.Attribute”,ValueSpec[;Rv]

DLG SET modifies the attributes of objects. Valid arguments are numeric values,
strings and string arrays, depending on the attribute type. To set the content
attribute of objects of class Edittext and Listbox use either a string variable or a
string array as an argument. If you use a string variable as an argument, use the
newline character (CHR$(10)) as a line separator. If you use a string array as an
argument, place each element on a different line.

DLG GET

Syntax:

 DLG GET “ObjectPath.Attribute”,Variable [;Rv]

DLG GET is used to get the attributes values of objects. Valid arguments are
numeric variables, string variables and string arrays, depending on attribute type.

To get the contents of objects of class Edittext and Listbox use either a string vari-
able or a string array as an argument. If you use a string variable as an argument,
the newline character (CHR$(10)) is used as a line separator. If you use a string
array as an argument, each element is placed on a different line.

38

Eloquence Dialog System
API (Application Programming Interface)

DLG DRAW

Syntax:

 DLG DRAW “ObjectPath” [;Rv]

Setting attributes will not affect the display until DLG DRAW or DLG DO are
executed. DLG DRAW refeshes the dialog and displayes it, if it is not currently
visible.

To make the dialog invisible again, set the .visible attribute to false.

DLG DO

Syntax:

 DLG DO “Dialog.Path” [[,ExitRule] [,ExitObject]] [;Rv]

DLG DO starts the dialog handling. If the focus for an object of the dialog has not
previously been set, either the last active object will remain active, or the focus is
set to the first available object.

NOTE: With Dialog Manager it is not possible to set the focus on an invisible dialog.

If the variablesExit_Rule (numeric) andExit_Object$ (string) are used, they are
set to the object path and to the .rule value of the object, which had the focus when
the dialog terminated. If the dialog was terminated by pressing a function key, the
appropriate value will be returned.

A dialog terminates when either a pushbutton is pressed or when an object is exe-
cuted and the rule value of this object is neither zero nor -1.

DLG HELP

Syntax:

 DLG HELP “HelpTag” [;Rv]

DLG HELP activates the online help subsystem explicitly from inside your appli-
cation using the help tag as the keyword to search in the help text file. Normally
the help subsystem is called from within the dialog.

If the keyword does not exist, DLG HELP returns without an error. IfRv was
specified, it contains the error number 663.

For more information on using Help see chapter , Help Subsystem,

39

2

Eloquence ASCII Windows

40

Eloquence ASCII Windows
Dialog Resource File

Dialog Resource File

A Dialog Resource file can be loaded using DLG LOAD. This is a normal HP-UX
text file in a simple format:

Class ObjectName {
.Attribute = value
.Attribute = ”String”

Class ObjectName {
.Attribute = value
...

}

...
}

...

Class defines the object class.

ObjectName defines the name of the object.

.Attribute defines the characteristic of the object.

After the file has been analyzed, the objects are defined internally with DLG NEW
and DLG SET.

Example

dialog Dialog1 {
 .x = 1
 .y = 1
 .w = 50
 .h = 12
 .title = “ Dialog1 “
 .f4 = 1

 groupbox box1 {
 .x = 2
 .y = 2
 .w = 20
 .h = 5
 .title = “ box1 “

 radiobutton r1 {
 .x = 1
 .y = 1
 .text = “Radio 1”
 }

 radiobutton r2 {
 .x = 1

41

Eloquence ASCII Windows
Dialog Resource File

 .y = 2
 .text = “Radio 2”
 }
 }

 groupbox box2 {
 .x = 25
 .y = 2
 .w = 20
 .h = 5
 .title = “ box2 “

 radiobutton r1 {
 .x = 1
 .y = 1
 .text = “Radio 1”
 }

 radiobutton r2 {
 .x = 1
 .y = 2
 .text = “Radio 2”
 }
 }

 pushbutton ok {
 .x = 2
 .y = 10
 .text = “ DONE “
 .rule = 1
 }
}

The include directive

The include directive makes it possible to have common definitions among dialog
files (including context specific definitions).

 include "file"

This will include the given file. If a relative path is specified, the include file is
loaded relative to the path, the current dialog file is loaded from.

The file name may also contain environment variables. Environment variables are
expanded in order to locate the file.

For example:

 include "$HOME/sample.inc"

will include the file sample.inc from the home directory.

 include "sample.inc"

will include the file sample.inc from the same directory as the dialog file.

42

Eloquence ASCII Windows
Dialog Resource File

If the first character is a question mark (’?’), DLG LOAD will not fail if the
include file is not present.

For example:

 include "?$HOME/sample.inc"

will try to include the file sample.inc from the home directory.

Include file nesting is limited to two levels.

The define directive

The define directive makes it possible to use Variables in the dialog file.

Name = value

This will associate Name with value. This name may subsequently be used to ref-
erence the associated value.

If Name has already been defined, it will be updated with the current value.

For example:

 # border types
 Bd_None = 0
 Bd_Thin = 1
 Bd_Thick = 2
 Bd_shadow = 3
 Bd_rshadow = 4

 ALT_KEY = 266
 TITLE = "Sample string"

 Dialog sample {
 ...
 .border = Bd_Thick
 .alt = ALT_KEY
 .title = TITLE
 ...
 }

Using Models

You are able to useModels in your dialogs. The dialog description file contains
theModel andDialog description, as two dialogs.

For example:

 Dialog Model {
 ...

 PushButton OK {
 .text = "&OK"

43

Eloquence ASCII Windows
Dialog Resource File

 .rule = 1
 }
 PushButton HELP {
 .text = "&HELP"
 .rule = -1
 }
 }

 Dialog Sample {
 ...

 Model.OK Ok {
 .x = 10
 .y = 10
 }
 Model.HELP Help {
 .x = 20
 .y = 10
 }
 }

The PushButtons “OK” and “Help” will be created in the dialog Sample.

All attributes are derived as specified in the dialog Model.

It’s also possible to dynamically create objects from within Eloquence:

DLG NEW "Sample.OK","Model.OK"

This creates the object OK in the dialog sample as specified by the object
Model.OK.

44

Eloquence ASCII Windows
Keyboard Usage

Keyboard Usage

As long as an object does not use the following keys for other purposes, they are
used as follows:

• F1 - call Help system.

• Tab,Return and Cursor Down - switch to next object.

• Backtab (Shift + Tab) and Cursor Up - switch to previous object.

• Spacebar - activate/deactivate a radiobutton, a checkbox and a listbox entry.

• Spacebar orReturn - activate a pushbutton.

• Home,Shift +Home, Cursor LEFT and Cursor RIGHT can be used for editing within
a single-line edittext. All characters are inserted.

• Additionally, in a multi-line edittext or a listbox object, the following keys can be used:
Page Up,Page Down, Cursor Up, Cursor Right. WithReturn you can either insert a line
or move it to the beginning of the next line.

45

Eloquence ASCII Windows
Help Subsystem

Help Subsystem

The Eloquence dialog subsystem supports online help.

Each time a function key with an associated .f1…f8 attribute value of -1, or if not
defined otherwise, the f1 function key or an object with a rule value of -1 is exe-
cuted, the help subsystem will be activated.

Each object supports an optional help attribute. If the help attribute of the current
object is defined, its value will be used as the help tag (lookup value) in the help
file. If no help attribute is defined, the help tag of the object’s parent is used, or, if
that is not defined, the help tag of the object’s parent’s parent, and so on.

So if the help subsystem is activated, it will first check for a context specific help
tag, and then up the object hierarchy for at least a dialog-specific one. If no help
tag can be located, you will hear a beep.

The layout of the help dialog must be specified by the application programmer. So
you are free to define whatever you like. Only a few guidelines must be followed.
A template file is explained below.

After loading the Help dialog you have to specify the helpfile name.

A help window consists of a box and several pushbuttons.

The buttons RETURN, <<, and >> are invisible if not applicable. The help win-
dow contains the help text, and if defined, some text references which are dis-
played underlined.

Button Results in

CLOSE Close help dialog

RETURN Return to previous help tag

Continue help dialog with the previous
help tag

Continue help dialog with the next help
tag

HELP Show help on the help window

46

Eloquence ASCII Windows
Help Subsystem

If you move the cursor to a text reference, it becomes selected (reverse display).
PressingReturn continues the help dialog with the associated help tag.

UsingSpacebar andBackspace you could move to the next/previous embedded
text reference.

47

Eloquence ASCII Windows
Helpfile Format

Helpfile Format

The helpfile must contain all the help tags and text references. It’s an HP-UX text
file and MUST begin in the first column with the following syntax:

 ; anything with a semicolon in the 1st column is a comment

 <helptag> (names the help window)

 [<<]<helptag> (names the previous window in chain)

 [>>]<helptag> (names the next window in chain)

 Help text follows until next helptag occurs

 Hypertext reference [->keyword]<helptag> embedded in text

 <helptag> (names another window)

 <end>

Notes:

1. A text reference, when selected, causes the associated help window named by
the helptag to become the active help window.

2. The [->] and helptag marks are not displayed.

Example:

; This is a comment line
<Dialog>
This is a help Text for Help tag DIALOG.
There are 2 associated Text references:

 [->Field 1]<Ref1> chains to text Ref1
 [->Field 2]<Ref2> chains to text Ref2
<Ref1>
[>>]<Ref2>

Sample Help Field #1
<Ref2>
[<<]<Ref1>

Sample Help Field #2
<HelpHelp>
This is Help text for Help.
<end>

48

Eloquence ASCII Windows
Helpfile Format

You can use the following program to display the help.

You can use the following program to display the help.

10 DLG LOAD “help.dlg”
20 DLG SET “Help.Text.File”,”/users/eloq/dlg/demo”
30 DLG HELP “Dialog”
40 STOP

Sample Help Dialog

The help dialog consists of some required and some optional objects.

Required:

• Root object type must be of class Dialog.

• Help dialog must be named with “Help”.

• Inside the root dialog must be a HelpText object named “text”.

• You must specify two pushbuttons named: Close and Return.

Optional:

• pushbutton named “Next”

• push button named “Prev”

 To support Help for help dialog:

Set the .f1 attribute to 5 and the .help attribute of your help dialog to the desired
help tag e.g., “HelponHelp”. Create a pushbutton named Help with a .rule
attribute value of 5.

help.dlg
#
Default help dialog
#
This dialog is intended to be used as a template for your own
help dialog.

dialog Help {
 .x = 1
 .y = 1
 .w = 70
 .h = 20

49

Eloquence ASCII Windows
Helpfile Format

 .title = “ Help Title “

to provide help for help
 .f1 = 5
 .help = “HelpHelp”

 helptext text {
 .x = 2
 .y = 2
 .w = 66
 .h = 15
uncomment if you like it
.title = “ Help Dialog “
 .border = 0
 }

 pushbutton Close {
 .x = 2
 .y = 18
 .w = 8
 .text = “ CLOSE “
 }
 pushbutton Return {
 .x = 12
 .y = 18
 .w = 8
 .text = “RETURN “
 }

PushButton Prev and Next are optional.
 pushbutton Prev {
 .x = 30
 .y = 18
 .w = 8
 .text = “ << “
 }

50

Eloquence ASCII Windows
Helpfile Format

 pushbutton Next {
 .x = 40
 .y = 18
 .w = 8
 .text = “ >> “
 }

Help button is optional

 pushbutton Help {
 .x = 60
 .y = 18
 .w = 8
 .text = “ HELP “
 .rule = 5
 }
}

51

Eloquence ASCII Windows
FRM2DLG conversion utility

FRM2DLG conversion utility

FRM2DLG converts Eloquence FORM files into Eloquence dialog files. It will
create a dialog-file on the MSI volume with the same name as the FORM file.
After the conversion process has finished, the dialog-file will be displayed on the
screen. Press the function keyF8 to terminate.

It’s located in the/opt/eloquence/share/contrib/ directory.

As its location in the contrib directory indicates, FRM2DLG has been provided as
a template, that you may customize to fulfill your specific needs.

NOTE: This program is not supported and provided only as an example.

52

Eloquence ASCII Windows
Error Messages

Error Messages

650 General dialog failure

651 Unable to open file

652 Syntax error in dialog description

653 No space left in dialog table or MAX_DEPTH exceeded

654 Memory allocation failed in dialog

655 Duplicate dialog or object name

656 Illegal or bad object path

657 Bad or improper attribute

658 Parent object does not agree to child object

659 Bad or improper value type

660 Invalid value

661 Can’t set focus

662 No helpfile defined

663 No such help tag (informational only)

53

3

Eloquence Graphical User Interface

The graphical user interface is implemented through (platform dependent) dialog
drivers. If you activate a dialog driver, all Eloquence DLG statements are no
longer executed by Eloquence, but passed to the specified driver.

The driver will map the Eloquence DLG statements to ISA Dialog Manager
intrinsic calls which will handle your display.

54

Eloquence Graphical User Interface
Overview

Overview

You may simply activate a driver using one of the following DLG SET state-
ments:

 DLG SET ".driver","motif"
DLG SET ".driver","alpha"

The first example above will redirect all DLG statements to the motif driver, while
the second example will redirect all DLG statements to the alpha driver.

 DLG SET ".driver","@ client "

The example above will redirect all DLG statements to the network driver running
on the system namedclient.

NOTE: Using the network driver requires theRUNSRV utility to be running on theclient system.

NOTE: Although it’s possible to use Eloquence dialog files (they are converted internally at
runtime) it’s strongly recommended to convert them to Dialog Manager format due to
performance considerations.

Once converted, you’re able to change the layout with the Dialog Manager graph-
ical editor.

The Dialog is converted using theCVDLG utility:

 cvdlg -driver motif sample .idm sample .dlg

This will convert the Eloquence dialog filesample.dlg to Dialog Manager dialog
file sample.idm using the motif driver.

It’s also possible to compile a Dialog Manager dialog file. This has some addi-
tional performance advantages during dialog file load time. Compilation is done
through the Dialog Manager idm utility.

For Example:

 idm +writebin sample .idc sample .idm

This will compile the Dialog Manager dialog filesample.idm into a filesam-
ple.idc.

Compiled Dialog Manager files are platform dependent.

55

Eloquence Graphical User Interface
Overview

NOTE: The idm utility program isnot included with Eloquence. You must purchase the Dialog
Manager product to be able to compile dialog files.

The DLG LOAD is able to automatically select the appropriate dialog file if a dia-
log driver has been activated. If you specify a file extension of “.dlg”, DLG
LOAD will look for the following files (in this order):

The file extensions may be customized in the eloq.ini configuration file.

For Example:

 DLG LOAD ”sample.dlg”

will try to load “sample.idc” first, then “sample.idm” and at last “sample.dlg”.

NOTE: If we talk in the following documentation about dialog server we talk about software that
runs on the system on which the user interface should be displayed. The dialog client is the
Eloquence application, because it sends requests to the dialog server to handle the user
interface.

NOTE: If we talk about systems, the server system is the system on which the Eloquence
application runs, while the client is the system on which the user interface is displayed.

.idc compiled Dialog Manager file

.idm Dialog Manager file

.dlg Eloquence dialog file

56

Eloquence Graphical User Interface
Eloquence Dialog Drivers

Eloquence Dialog Drivers

This document describes the extensions to Eloquence, if a dialog driver has been
activated.

Eloquence supports the following attributes:

.driver SET/GET dialog driver

.async SET/GET driver communication mode

Starting a driver

To start a driver from within Eloquence, you issue the following command:

DLG SET ".driver","driver_spec [ini_section [arguments]]"

driver_spec: motif start the motif driver
alpha start the alpha driver
@client start the network driver on the system namedclient

ini_section: Optional name of auser-defined sectionin the eloq.ini file
where the defaults can be overridden.

arguments: Additional arguments can optionally be specified here and will
be passed-through to the Dialog Manager.

On driver start-up, the following tasks are performed:

1 The driver sets up theDialog Manager argument list from thearguments specified
in theDLG SET ".driver" statement, if any. The driver then reads the configura-
tion items from the eloq.ini file.

2 If ini_section is specified in theDLG SET ".driver" statement, the driver
reads additional configuration items from thisuser-defined section in the eloq.ini file.
The types of entries distinguish between the different drivers, so the examples of user
defined section are placed in the driver references (see chapter , Driver Reference,)

3 If ini_section is specified in theDLG SET ".driver" statement, the driver
searches thisuser-defined section in the eloq.ini file for an item namedArguments. If
this item exists, its value is appended to theDialog Manager argument list.

Example:

[debug]
Arguments = -IDMtracefile /tmp/idmtrace

57

Eloquence Graphical User Interface
Eloquence Dialog Drivers

This enables an additional Dialog Manager argument which creates a trace file for
debugging purposes. In order to activate this item, the name of this section must be
specified in theDLG SET ".driver" statement, e.g.:

DLG SET ".driver","motif debug"

4 Finally, the composedDialog Manager argument list is passed to the Dialog Manager
runtime system start-up function.

NOTE: For a list of valid command line arguments, please refer to theISA Dialog Manager
documentation.

NOTE: For details aboutconfiguration items and user-defined sections please refer to chapter
Configuring Eloquence, sectionsCustomize the ELOQ.INI File on the HP-UX System and
Customize the ELOQ.INI File on the PC Platform.

Setting (or re-setting) driver will result in an impliedDLG STOP, this statement
will reset the dialog driver.

For example:

 DLG SET ".driver","motif"
 DLG SET ".driver","alpha"

The first example above will redirect all DLG statements to the motif driver, while
the second example will redirect all DLG statements to the alpha driver.

 DLG SET ".driver","@ client "

The example above will redirect all DLG statements to the network driver running
on the system namedclient.

NOTE: For a more specific description of the drivers, please refer to the sectionsMotif Driver,
Alpha Driver andNetwork Driver in this chapter.

NOTE: Using the network driver requires theRUNSRV utility to be running on theclient system.

Driver ASYNC mode

The dialog client and server processes may communicate in two ways:

Synchronous Each request by the client results in a server response. Pro-
cesses have to wait on each other.

Asynchronous Only specific requests result in a server response. Processes run
concurrently.

58

Eloquence Graphical User Interface
Eloquence Dialog Drivers

Given the fact that server operations are normally successfully completed, a lot of
communication overhead is generated. Using ASYNC mode, this overhead is
reduced dramatically, resulting in much better response time. However, because
the server does not necessarily notify the client immediately when a problem is
recognized, the error message may be retrieved at any statement executed later.

To control the driver ASYNC communication mode, you must use the following
command:

 DLG SET ".async",mode

where mode is either 1 (ASYNC mode active) or 0 (SYNC mode active).

Only the network driver (client-server) can run in ASYNC communication mode,
but all drivers accept the syntax above.

Only the following commands will use the ASYNC communication mode:

• DLG SET
• DLG STOP
• DLG NEW
• DLG DEL

During program debug time, it is recommended to use the SYNC mode. (DLG
SET ".async",0). This is also required if you expect a command to fail. Default
communication mode is SYNC mode.

It might have a performance advantage to use the ASYNC mode during a transfer
of a bigger amount of data. e.g. filling a ListBox or a multiline EditText.

Recovering from runtime error in ASYNC mode

If you encounter a runtime error while communicating in ASYNC mode, it’s nec-
essary to re-sync client and server processes again. To accomplish this you should
issue a DLG SET ".async" with any mode.

59

Eloquence Graphical User Interface
Driver Reference

Driver Reference

This chapter describes the drivers provided with Eloquence:

• Motif
• Alpha
• Network

Motif Driver

motif.drv is the Eloquence dialog driver for the Motif GUI. It must be installed
in the directory/opt/eloquence/lbin .

Starting the Motif Driver

To start the motif driver from within Eloquence, you issue the following com-
mand:

 DLG SET ".driver","motif"

This will redirect output to your display as defined in theDISPLAY environment
variable. If theDISPLAY environment variable is not set or if you want to output
to a different display you can specify the display address in the driver command
using the-display argument.

The driver provides a method to lookup additional arguments in auser-defined
section of your eloq.ini file. Using this method, you can maintain system-specific
driver arguments at a centralized location (eloq.ini), so you can execute your Elo-
quence program in different environments without code changes.

Example:

[myoptions]
Arguments = -display client:0

This enables an additional Dialog Manager argument which specifies a different
output displayclient:0 wheremotif.drv will send its output to. In order to acti-
vate this item, the name of youruser-defined section must be specified in theDLG
SET ".driver" statement, e.g.:

 DLG SET ".driver","motif myoptions"

60

Eloquence Graphical User Interface
Driver Reference

NOTE: For details aboutconfiguration items and user-defined sections please refer to chapter
Configuring Eloquence, sectionCustomize the ELOQ.INI File on the HP-UX System.

Driver arguments can also immediately be specified in theDLG SET ".driver"
statement. This is useful for arguments which are closely related tomotif.drv
and not system-specific, e.g.:

 DLG SET ".driver","motif myoptions -IDMfont 0 -IDMcolor 0"

These two Dialog Manager arguments set the font and color resources tovariant
0, this is normally appropriate formotif.drv .

NOTE: If driver arguments are immediately specified in theDLG SET ".driver" statement,
anuser-defined sectionmust be specified, too. However, if you specify a section name not
present in the eloq.ini file, theuser-defined section will be ignored.

NOTE: For a list of valid command line arguments, please refer to theISA Dialog Manager
documentation.

Alpha Driver

alpha.drv is the Eloquence dialog driver for text terminals such as HP70092 or
VT220. It must be installed in the directory/opt/eloquence/lbin .

NOTE: The alpha.drv is different from Eloquence DLG sincealpha.drv uses the Dialog
Manager runtime functionality while DLG is a built-in Eloquence component.
Normally, text terminals are directly attached to the system running Eloquence, so DLG
performs better compared toalpha.drv due to thealpha.drv client-server protocol
overhead. For this reason, it is recommended to use Eloquence DLG for text terminals
unless you need native Dialog Manager functionality.

Starting the Alpha Driver

To start the alpha driver from within Eloquence, you issue the following com-
mand:

 DLG SET ".driver","alpha"

This will redirect output to your display as defined in theDISPLAY environment
variable. If theDISPLAY environment variable is not set or if you want to output
to a different display you can specify the display address in the driver command
using the-display argument.

61

Eloquence Graphical User Interface
Driver Reference

The driver provides a method to lookup additional arguments in anuser-defined
section of your eloq.ini file. Using this method, you can maintain system-specific
driver arguments at a centralized location (eloq.ini), so you can execute your Elo-
quence program in different environments without code changes.

Example:

[myoptions]
Arguments = -display /dev/tty0p6

This enables an additional Dialog Manager argument which specifies a different
output display/dev/tty0p6 wherealpha.drv will send its output to. In order to
activate this item, the name of youruser-defined section must be specified in the
DLG SET ".driver" statement, e.g.:

 DLG SET ".driver","alpha myoptions"

NOTE: For details aboutconfiguration items and user-defined sections please refer to chapter
Configuring Eloquence, sectionCustomize the ELOQ.INI File on the HP-UX System.

Driver arguments can also immediately be specified in theDLG SET ".driver"
statement. This is useful for arguments which are closely related toalpha.drv
and not system-specific, e.g.:

 DLG SET ".driver","alpha myoptions -IDMfont 2 -IDMcolor 2"

These two Dialog Manager arguments set the font and color resources tovariant
2, this is normally appropriate foralpha.drv .

NOTE: If driver arguments are immediately specified in theDLG SET ".driver" statement,
anuser-defined sectionmust be specified, too. However, if you specify a section name not
present in the eloq.ini file, theuser-defined section will be ignored.

NOTE: For a list of valid command line arguments, please refer to theISA Dialog Manager
documentation.

Network Driver

The Eloquence client-server network driver is implemented for the Microsoft
Windows GUI. The name of this driver isDLGSRV. The network driver must even
be set if the application server is running on the same system as the GUI server.

Overview

62

Eloquence Graphical User Interface
Driver Reference

Starting the Network driver

To start the network driver from within Eloquence, you issue the following com-
mand:

 DLG SET ".driver","@client"

whereclient is the name of the system running Microsoft Windows where the user
interface (dialog server) should run.

NOTE: Client must be defined in your/etc/hosts file. You may also use the IP address instead
of the host name.

When starting the network driver, you can pass additional arguments to the Dialog
Manager runtime system. The driver provides a method to lookup additional argu-
ments in anuser-defined section of your eloq.ini file. Using this method, you can
maintain system-specific driver arguments at a centralized location (eloq.ini), so
you can execute your Eloquence program in different environments without code
changes.

Example:

[debug]
Arguments = -IDMtracefile C:\TMP\IDMTRACE.TXT

This enables an additional Dialog Manager argument which creates a trace file for
debugging purposes. In order to activate this item, the name of youruser-defined
section must be specified in theDLG SET ".driver" statement, e.g.:

 DLG SET ".driver","@client debug"

63

Eloquence Graphical User Interface
Driver Reference

NOTE: For details aboutconfiguration items and user-defined sections please refer to chapter
Configuring Eloquence, sectionCustomize the ELOQ.INI File on the PC Platform.

Driver arguments can also immediately be specified in theDLG SET ".driver"
statement. This is useful for arguments which are closely related to the network
driver and not system-specific, e.g.:

 DLG SET ".driver","@client myoptions -IDMfont 1 -IDMcolor 1"

These two Dialog Manager arguments set the font and color resources tovariant
1, this is normally appropriate for the Microsoft Windows network driver.

NOTE: If driver arguments are immediately specified in theDLG SET ".driver" statement,
anuser-defined sectionmust be specified, too. However, if you specify a section name not
present in the eloq.ini file, theuser-defined section will be ignored.

NOTE: For a list of valid command line arguments, please refer to theISA Dialog Manager
documentation.

Starting the Network Driver on the Remote System

The network driver must be started on the remote system in order to get connected
to the server system running Eloquence. This is done either automatically or man-
ually.

• Automatic Start-up

If the PortRange configuration item defined in section[dmclnt] of the HP-UX eloq.ini
file is nonzero, Eloquence expects theRUNSRV utility to run on the remote system.
RUNSRV will then be used to start-up the network driver on the remote system.

This is the recommended method to start-up the network driver.

• Manual Start-up

If the PortRange configuration item defined in section[dmclnt] of the HP-UX eloq.ini
file is zero, Eloquence will wait until the network driver is started manually on the
remote system.

If you choose this method to start-up the network driver,DLGSRV expects a command
line argument of-connect servername:portnumber which enablesDLGSRV to connect
to the server system (running Eloquence).

Using this nonstandard method to start-up the network driver is not recommended.

NOTE: Additional information is provided in sectionThe DLGSRV Utility later in this chapter.

The RUNSRV Utility

64

Eloquence Graphical User Interface
Driver Reference

RUNSRV is a utility program which is used by Eloquence to start the Eloquence
network dialog server (DLGSRV) on a remote PC running Microsoft Windows. To
achieve this, theRUNSRV program must be active on the remote PC.

Starting the RUNSRV Utility If you startRUNSRV.EXE on the remote PC, it will
minimize itself waiting for a request.

If you restore theRUNSRV window, a log of the recent operations performed by
RUNSRV is displayed. IfRUNSRV is unable to handle a request, a message box pops
up.

NOTE: RUNSRV uses theWINSOCK.DLL on the PC to interface the network software.

Common Problems Network software not loaded

You either did not load the required network software or your network software is
not compatible.

Service runsrv (tcp) not found in your SERVICES file

You did not install the runsrv service name in yourSERVICES file.

Address already in use

The port number you used byRUNSRV is already in use. This may happen if the
port number is not unique or if you try to runRUNSRV a second time.

WinExec failed (nn): Error Message

RUNSRV was unable to perform the requested operation. Error number and mes-
sage reflect a problem detected by Microsoft Windows.

The Remote PC ELOQ.INI File RUNSRV uses the configuration information of the
[runsrv] section in the eloq.ini file on the PC. This file is located in yourWINDOWS
directory.

NOTE: Please refer to chapterConfiguring Eloquence, sectionCustomize the ELOQ.INI File on
the PC Platform, Section [runsrv]for details.

The DLGSRV Utility

DLGSRV is the Eloquence dialog server for the Microsoft Windows GUI. It runs
on the remote PC and contains the Dialog Manager runtime functionality for
Microsoft Windows.

65

Eloquence Graphical User Interface
Driver Reference

NOTE: Please refer to the chaptersInstalling Eloquence andConfiguring Eloquence for details
about installation and PC platform prerequisites. (see chapter , Configuration of the GUI
Server,)

Starting the DLGSRV Utility

Normally,DLGSRV is started automatically by theRUNSRV utility, which will pro-
vide the appropriate command line arguments. This is done when aDLG SET
".driver"," @client " statement is issued.RUNSRV then uses the configuration
itemDlgSrvX or DlgSrv of the[runsrv] section in the eloq.ini file on the PC to
compose the appropriate command line to startDLGSRV.

NOTE: Please refer to chapterConfiguring Eloquence, sectionCustomize the ELOQ.INI File on
the PC Platform, Section [runsrv]for details aboutDlgSrvX and DlgSrv. Additional
information is provided inHow to Run Multiple DLGSRV Simultaneously later in the
current section.

NOTE: DLGSRV uses theWINSOCK.DLL on the PC to interface the network software.

However, if the nonstandard method of manually startingDLGSRV is used,DLG-
SRV expects a command line argument of-connect servername:portnumber
which enablesDLGSRV to connect to the server system (running Eloquence):

DLGSRV.EXE -connect servername:portnumber [arguments]

-connect: This introduces the connection argumentservername:portnum-
ber.

servername: This is the host name of the server system (running Eloquence)
DLGSRV shall connect with.

NOTE: You should provide an appropriate entry forservername in yourHOSTS file on the remote
PC. The location of yourHOSTS file depends on your networking software.

portnumber: This is the port numberDLGSRV will use to connect to the
server system (running Eloquence).

arguments: Additional arguments can optionally be specified here and will
be passed-through to the Dialog Manager.

NOTE: For a list of valid command line arguments, please refer to theISA Dialog Manager
documentation.

WhenDLGSRV starts up, it will minimize itself. If you restore theDLGSRV win-
dow, a message box pops up, which allows you to terminate theDLGSRV program.
This may also be achieved by selectingClose from the system menu.

66

Eloquence Graphical User Interface
Driver Reference

NOTE: You should not terminateDLGSRV this way since this may lead to loss of data and
abnormal termination of the server program.DLGSRV will be terminated automatically by
Eloquence when processing has finished.
However, to recover from program failure or communication breakdown this method of
manually terminatingDLGSRV provides a very useful “emergency exit”.

The Remote PC ELOQ.INI File DLGSRV uses the configuration information of the
[dlgsrv] section in the eloq.ini file on the PC. This file is located in yourWINDOWS
directory.

NOTE: Please refer to chapterConfiguring Eloquence, sectionCustomize the ELOQ.INI File on
the PC Platform, Section [dlgsrv]for details.

How to Run Multiple DLGSRV Simultaneously It is not possible to have more
than one running instance of the Eloquence network dialog server for Microsoft
Windows (DLGSRV). This is a limitation of Microsoft Windows which is not capa-
ble to deal with multiple instances of 16bit applications which have multiple writ-
able data segments. In the past, any try to execute a second dialog server resulted
in a WinExec error 16.

In order to overcome this limitation (which would prevent you from starting more
than one graphical application simultaneously) a workaround has been imple-
mented in Eloquence.

Microsoft Windows recognizes an application by itsmodule identifier. A module
identifier is simply a string at a known location in the executable file holding the
internal application name. On application start-up, the Windows kernel checks if
an application with thismodule identifier is already running. This has runtime
benefits since the code segments of multiple instances are shared in memory.

The workaround to overcome this limitation is implemented by two means:

1 A newDLGCLONE utility has been provided to create additional copies of theDLGSRV
executable, each with a differentmodule identifier. These copies are named
DLGSRV2.EXE up toDLGSRV9.EXE.

2 TheRUNSRV utility now has a built-in mechanism to take care ifDLGSRV is already
active. If it detects an already activeDLGSRV, it starts one of the additional copies cre-
ated byDLGCLONE instead. This way, multiple instances ofDLGSRV can be run simul-
taneously since Microsoft Windows recognizes them as different modules due to
differentmodule identifiers.

This approach has some drawbacks:

• You need about 1.2 MB of additional disc space for each possibleDLGSRV instance.

• You need about 1.2 MB of available memory for each runningDLGSRV instance since

67

Eloquence Graphical User Interface
Driver Reference

the code segments are not shared between multiple instances.

To activate this mechanism, the eloq.ini file on the PC requires the following
changes:

1 Replace theDlgSrv configuration item in section[runsrv] with DlgSrvX.
DlgSrvX requires an additional entry of%s immediately following the base name of the
DLGSRV executable file.
If your DlgSrv is e.g.:

 DlgSrv = C:\ELOQ\DLGSRV.EXE -connect %s -IDMfont 1 -IDMcolor 1

replace it with:

 DlgSrv X = C:\ELOQ\DLGSRV %s.EXE -connect %s -IDMfont 1 -IDMcolor 1

2 Add theNDlgSrv configuration item in section[runsrv]. This specifies the maximum
number of simultaneously runningDLGSRV instances. The maximum value forNDlg-
Srv is 9.

If you require e.g. four instances ofDLGSRV running simultaneously, you specify:

 NDlgSrv = 4

3 After saving your changes to the eloq.ini file, run theDLGCLONE utility.

NOTE: Always run theDLGCLONE utility after changing the values ofDlgSrvX and/orNDlgSrv.
It will automatically adjust the number of copies of theDLGSRV executable to the value
given in theNDlgSrv configuration item. The copies will be created in the directory named
by theDlgSrvX configuration item.

NOTE: TheDlgSrv configuration item serves for backward compatibility and may not be supported
in future releases anymore.DlgSrvX is much more flexible and should be used instead.

NOTE: Please refer to chapterConfiguring Eloquence, sectionCustomize the ELOQ.INI File on
the PC Platform, Section [runsrv]for details aboutDlgSrvX andNDlgSrv.

32bit Network Dialog System

The DLGSRV network dialog driver and the RUNSRV utility are available on the
32bit Windows environment (Windows 95 and NT). They are named DLGSRV32
and RUNSRV32, respectively.

The 32bit version supports the same functions as the 16bit version, so read the
section above for further details. The differences are explained below.

68

Eloquence Graphical User Interface
Driver Reference

NOTE: The RUNSRV32 utility will become obsolete in future releases. Its
functionality will be integrated into the eloqd server process.

The DLGSRV32 and RUNSRV32 programs get the configuration from the
eloqcl.ini configuration file, which is located in the ‘etc’ directory of the Elo-
quence installation directory.

The DLGCLONE utility is obsolete since DLGSRV32 can be natively used in
multiple instances.

69

Eloquence Graphical User Interface
Dialog Definitions File

Dialog Definitions File

Overview

The layout and some functions of dialogs can be stored in dialog definition files.

This files consists of several parts, which have different functions. To understand
how the ISA Dialog Manager works, it’s necessary to have some knowlegde
about the definitions file.

When starting to create an dialog you have to load some basic definitions, which
are defined in the Defaultsfile. During creation of the dialog you add your defini-
tions to this file.This are resource definitions, as fonts or colors, models and the
dialog definitions of one or more certain dialogs.

To create the resource definitions and models only ones, it is recommended to use
modular definition files. This feature helps to encapsulate reusable information.

The DEFAULTS File

The defaults file is used to provide defaults to dynamically created objects and
will be used by theCVDLG utility program to convert dialog files. In addition it
controls the dynamic behavior of the dialog server.

This chapter will shortly introduce each major element of the Eloquence defaults
file. Please refer to theISA Dialog Manager documentation for further reference.

Callback Functions

The callback functions are used by Eloquence to filter unexpected events. If a
unexpected event is recognized, it will be ignored. All further processing is done
through the appropriate rules.

Eloquence needs the functions below to keep track of the current object state.

Function name Called

EqPushButtonCB if a pushbutton is selected

EqCheckBoxCB if a checkbox is (de-) activated

EqRadioButtonCB if a radiobutton is activated

EqEditTextCB if an edittext looses focus

70

Eloquence Graphical User Interface
Dialog Definitions File

Returning from DLG DO

Returning from theDLG DO statement is achieved by calling the procedureEqEx-
itEventLoop . It will return control back to Eloquence with a given return code
and an object path.

Resources

Resources are platform dependent.Resource variants allow to have the same dia-
log source file for all platforms.

Whenever there are resource variants, they are used in the following manner:

To activate the appropriate resource variant you specify it on the driver command
line, e.g.:

 -IDMfont 1 -IDMcolor 1

This will start-up Dialog Manager with font and color variant 1. Please refer to the
ISA Dialog Manager documentation for a description of valid command line
arguments.

The following font resources are allocated by default:

• BaseFont is used to calculate all sizes and positions.
BaseFont should be a fixed space font.

• NormalFont is used to display all text fields

Attributes

There are some user-defined attributes allocated for use by Eloquence:

• integer EqRule

Function name Description

EqExitEventLoop This will terminate theDLG DO statement with the
given object and rule value.

Variant Platform

0 Motif GUI

1 Microsoft Windows GUI

2 Alpha Windows

71

Eloquence Graphical User Interface
Dialog Definitions File

This is used to emulate the Eloquencerule attribute.

• integer EqActiveline
This is used to emulate the Eloquenceactiveline attribute.

• integer EqKbRule[10]
This is used to emulate the Eloquence function key handling.

Popup Box

The EloquencePOPUP BOX statement is mapped to theEqPopup window and its
associated rules.

It will be configured dynamically by Eloquence according to the needs of aPOPUP
BOX statement.

Rules

• rule boolean EqSaveDialog(string Fname)
This is used by theCVDLG utility to save the converted dialog files.

• on CHECKBOX activate, deactivate
This is used to mapCheckBox behavior.

• on RADIOBUTTON activate
This is used to mapRadioButton behavior.

• on LISTBOX dbselect
This is used to mapListBox behavior.

• on LISTBOX key EqKbSelect
This is used to mapListBox behavior.

• on EDITTEXT deselect
This is used to mapEditText behavior.

• on dialog key EqKbF1 … on dialog key EqKbF8
This is used to map Eloquence function key handling.

72

Eloquence Graphical User Interface
Dialog Definitions File

Using Modular Dialog Files

Dialog Manager Versions A.03.02a and above allow modular dialog files. This
new feature helps to encapsulate reusable information into module files while the
dialog file itself is stripped down to its dialog specific information.

NOTE: This feature is currently unsupported. There is a severe bug in the underlying ISA Dialog
Manager library (a file descriptor leak), which will cause a fatal dialog server failure after
processing a few dialogs.

Although this feature has bugs and is therefore unsupported, we strongly recom-
mend that you get in touch with modular dialog files, because they have great
advantages due to reduced redundancies. This will help you to reduce mainte-
nance effort significantly.

The next Eloquence patch will provide full support for modular dialog files
assuming the Dialog Manager bug has been fixed.

You find a detailed description of modular dialogs in the Dialog Manager release
notes 8/95, Version A.03.02a. These release notes will discuss only Eloquence
specific issues.

There is a new modular Eloquencedefaults.eq file. You find it and the related
modules at the following locations:

HP-UX: /opt/eloquence/lib/module
Windows: C:\DLG\MODULE

This file contains the include directives for the following modules:

eqrsrc fonts and colors
eqbind functions, accelerators, standard rules
eqdef defaults
eqpopup EqPopup window

You find these files in the module directory named above.

Additionally, there are the related interface files with the extension.if .

To use these modules, follow these steps:

1 In order to access the module files, you must establish theIDMLIB access path. This
can be done either by using theIdmLib configuration item in the eloq.ini file or by set-
ting theIDMLIB environment variable.

• HP-UX: eloq.ini, section [dmsrv]
IdmLib = /opt/eloquence/lib/module:/opt/eloquence/lib/mymodule

• HP-UX: IDMLIB environment variable

73

Eloquence Graphical User Interface
Dialog Definitions File

IDMLIB = /opt/eloquence/lib/module:/opt/eloquence/lib/mymodule
export IDMLIB
(You should include these statements in your.profile.)

• Windows: eloq.ini, section [dlgsrv]
IdmLib = C:\DLG\MODULE;C:\DLG\MYMODULE

• Windows: IDMLIB environment variable
set IDMLIB = C:\DLG\MODULE;C:\DLG\MYMODULE
(You should include these statements in yourAUTOEXEC.BAT.)

Themymodule directory is an example for a directory containing your own modules.
The directories are separated by a colon (’: ’, Motif) or a semicolon (’; ’, Microsoft
Windows).

2 Adjust the following files according to the contents of your currentdefaults.eq file (if
you have never changed thedefaults.eq please continue with step 4):

• eqrsrc.mod
• eqbind.mod
• eqdef.mod
• eqpopup.mod

3 If you had to change the files in step 2 you should re-create the related interface files.

To do this you change to the module directory named above and execute theidm util-
ity with the+writeexport option:

 idm +writeexport interfacefile modulefile

Example:

 idm +writeexport eqdef.if eqdef.mod

On Microsoft Windows you should specify the full access path to theidm utility and
the interface file. You can use theIDMLIB value to access the module files (if the
IDMLIB environment variable has been defined), e.g.:

 C:\IDM\IDM +writeexport C:\DLG\MODULE\EQDEF.IF IDMLIB:EQDEF.MOD

Repeat this for each of the four files in the following order:

• eqrsrc.mod (eqrsrc.if)
• eqbind.mod (eqbind.if)
• eqdef.mod (eqdef.if)
• eqpopup.mod (eqpopup.if)

If you do not have the Dialog Manager development software you should manually
adapt the existing interface files:

• Each object defined and exported in a module file has a corresponding declaration
statement in the associated interface file.

• So, if you removed exported objects from a module file, you should lookup the cor-
responding declaration in the interface file and remove it, too.

74

Eloquence Graphical User Interface
Dialog Definitions File

• If you added new exported objects, you should add a corresponding declaration
statement to the interface file.

4 At last you should change your eloq.ini configuration file. You should add a newuser-
defined section which overrides theDefaultsFile configuration item to use the new
modular one. When starting the dialog server with theDLG SET statement, specify this
configuration name as an argument, e.g:

 [UseModules]
 DefaultsFile = /opt/eloquence/lib/module/defaults.eq

 DLG SET ".driver","motif UseModules"

Alternatively, you can change theDefaultsFile setting in the default dialog
server section to use the modulardefaults.eq file:

• HP-UX: DefaultsFile=/opt/eloquence/lib/defaults.eq

• change to: DefaultsFile=/opt/eloquence/lib/module/defaults.eq

• Windows: DefaultsFile=C:\DLG\DEFAULTS.EQ

• change to: DefaultsFile=C:\DLG\MODULE\DEFAULTS.EQ

75

Eloquence Graphical User Interface
Dialog Definitions File

Using Models

Dialog Manager models provide an efficient way to handle similar objects instead
of defining a lot of individual objects.

Example:

 model statictext YellowText
 {
 .fgc ColBlack;
 .bgc ColYellow;
 .width 10;
 .text "YellowText";
 }
 ...
 child YellowText Yt1
 {
 .xleft 30;
 .width 15;
 .ytop 0;
 }

This defines the modelYellowText. It is derived from thestatictext object default,
but defines its own attribute default values.

The instanceYt1 of theYellowText model will inherit all attributes as defined by
thestatictext default and theYellowText model.

The resulting object will display "YellowText" with black text on a yellow back-
ground.

Models may also define new attributes for Dialog Manager objects and may have
default rules associated with them.

The following example will define the modelMyMenuItem which is derived from
the defaultmenuitem object type.MyMenuItem defines anEqRule attribute and a
rule causing return fromDLG DO statement to Eloquence when an instance of the
MyMenuItem is selected and this instance has a nonzeroEqRule value:

 model menuitem MyMenuItem
 {
 .text "MyMenuItem";
 integer EqRule := 0;
 }
 ...
 child menubox
 {
 .title "&File";
 child MyMenuItem About
 {
 .text "&About";
 .EqRule := 1;
 }
 ...
 child MyMenuItem Exit

76

Eloquence Graphical User Interface
Dialog Definitions File

 {
 .text "&Exit";
 .EqRule := 2;
 }
 }
 ...
 on MyMenuItem select
 {
 if this.EqRule then
 EqExitEventLoop(this, this.EqRule);
 endif
 }

NOTE: Please refer to theISA Dialog Manager documentation for details.

NOTE: When a new dialog object is dynamically created with theDLG NEW statement (where the
object path and anobject type must be provided), you may specify a Dialog Manager object
model instead of theobject type.

77

Eloquence Graphical User Interface
On-line Help

On-line Help

The Eloquence dialog server provides a mechanism which calls an external pro-
gram to provide (context sensitive) on-line help.

The Eloquence dialog server relies on the popular Netscape WWW browser to
provide on-line help. This makes it possible to have the on-line documentation in
standard HTML format placed on a server system (running a HTTP server) or in a
local directory.

As another benefit, the on-line documentation format is portable across the differ-
ent systems such as HP-UX and Microsoft Windows which allows easier mainte-
nance of the documentation files.

NOTE: This functionality requires Netscape revision 1.1 or above.

NOTE: The help mechanism built into former Eloquence dialog server releases worked different,
depending on the dialog server. The motif dialog server called the HP VUE help subsystem
(by executinghelpview). The Microsoft Windows dialog server called the Microsoft
Windows help subsystem. This implied different documentation formats from system to
system. The help context passed to the external program was created from information
contained in the dialog variableHelpVolume and an object specific help attribute.

NOTE: Netscape is not included with Eloquence. It can be purchased separately fromNetscape
Communications Corp. Netscape can either be obtained from a local distributor or may be
downloaded from the anonymous ftp server ofNetscape Communications Corp. at
ftp.netscape.com.

The Microsoft Windows Platform

The Microsoft Windows dynamic data exchange (DDE) communication protocol
is used to communicate with Netscape.

NOTE: Please refer to sectionThe RUNSRV Utility, RUNSRV DDE Communication prior in this
chapter for details about Microsoft Windows dynamic data exchange.
Additional information is provided in chapterConfiguring Eloquence, sectionCustomize
the ELOQ.INI File on the PC Platform, Section [modules].

The Motif Platform

Eloquence uses the communication mechanism built in Netscape. It calls the
Netscape executable passing any arguments on the command line.

78

Eloquence Graphical User Interface
On-line Help

Netscape will then pass the request to an already running Netscape process on the
current display. If Netscape is not currently running on the display, it will be
started. In order to locate the Netscape executable, the dialog server relies on the
configuration itemNetscape in section[dmsrv] of the eloq.ini file on the HP-UX
system.

NOTE: Please refer to chapterConfiguring Eloquence, sectionCustomize the ELOQ.INI File on
the HP-UX System, Section [dmsrv] for details.

Accessing the On-line Documentation

Before the on-line documentation can be accessed, two configurations are neces-
sary:

1 The configuration itemHelpBaseURL defines the base location of the on-line docu-
mentation. It is defined in the[dlgsrv] of the fileeloqcl.ini.

Example:

 HelpBaseURL = http://www/application/help/

You can think ofHelpBaseURL as the on-line help document root for a specific Elo-
quence application. Below this root there should be separate hierarchy levels, one for
each functional area inside the application.

NOTE: Please refer to chaptersConfiguring Eloquence, sectionCustomize the ELOQ.INI File on
the HP-UX System, Section [dlgsrv] andConfiguring Eloquence, sectionCustomize the
ELOQ.INI File on the PC Platform, Section [dlgsrv] for details.

2 TheEqHelpPath dialog variable defines the on-line document location relative toHelp-
BaseURL. This variable can either be set to a fixed value in your Dialog Manager dialog
file, e.g.:

 config variable string EqHelpPath := "accounting/Dialog.html";

Alternatively, it can be dynamically set in your Eloquence program using theDLG
SET statement, e.g.:

 DLG SET "EqHelpPath!value","accounting/Dialog.html"

You can think ofEqHelpPath as the on-line help document hierarchy level for a spe-
cific functional area inside the Eloquence application. The objects inside this func-
tional area should be each associated with a separatehelp tag in order to realize a
context sensitive on-line help system.

79

Eloquence Graphical User Interface
On-line Help

NOTE: Please refer to sectionDialog Manager, Accessing the Dialog Manager Variables later in
this chapter for details.

If these prerequisites are fulfilled, ahelp tag can be defined for every dialog object
using the.help attribute. This is normally done in your Dialog Manager dialog
file, e.g.:

 window My_window
 {
 ...
 .help "#My_window";
 ...
 }

Alternatively, it can be dynamically set in your Eloquence program using theDLG
SET statement, e.g.:

 DLG SET "My_window.help","#My_window"

With these settings, the final document address is composed by concatenating
HelpBaseURL, EqHelpPath andMy_window.help. The resulting document is:

 http://www/application/help/accounting/Dialog.html#My_window

Pressing theF1 function key or triggering anEqRule -1 will then automatically
invoke the Netscape WWW browser, which in turn loads the resulting document
named above.

NOTE: You can specify a different.help attribute for each dialog object in order to provide real
context sensitive on-line help. However, if an object does not have a.help attribute, the
parent object’s.help attribute is used if present. This way, the object hierarchy is traced
up to the root (window) object until a.help attribute is found.

NOTE: If you want to arrange your on-line help document hierarchy in the local file system rather
than on a HTTP server, you simply define a differentHelpBaseURL, e.g.:
 HelpBaseURL = file://opt/application/help/

The DLG HELP Statement

TheDLG HELP statement is now implemented with the dialog server. It provides
access to a specifichelp tag as if theF1 function key had been pressed or an
EqRule -1 had been triggered.

Following the example in the former section, if you issue the following statement:

 DLG HELP "#My_window"

Netscape will be invoked loading the same document as in the example above.

80

Eloquence Graphical User Interface
On-line Help

The EqHelpOnObject Function

This function is used internally to enable context sensitive on-line help when
pressing theF1 function key or triggering anEqRule -1.

You can apply this function inside a Dialog Manager rule, e.g.:

 on WINDOW help
 {
 EqHelpOnObject(this);
 }

It cannot be applied inside a Eloquence program, since it expects anobject identi-
fier argument which Eloquence cannot provide.

This function must be declared in your Dialog Manager dialog file if you want to
apply it, the declaration should look like:

 function boolean EqHelpOnObject(object input);

Please refer to the file/opt/eloquence/lib/defaults.eq , where you will
find the function declaration as well as theon WINDOW help rule.

The EqHelpOnTag Function

This function is similar to theEqHelpOnObject function, except that an addi-
tional parameter must be provided which refers to a specifichelp tag.

You can apply this function inside a Dialog Manager rule to provide on-line help
for a specifichelp tag, e.g.:

 on Help_on_help_button select
 {
 EqHelpOnTag(this,"#HelpOnHelp");
 }

It cannot be applied inside a Eloquence program, since it expects anobject identi-
fier parameter which Eloquence cannot provide.

This function must be declared in your Dialog Manager dialog file if you want to
apply it, the declaration should look like:

 function boolean EqHelpOnObject(object input, string input);

Please refer to the filedefaults.eq , where you will find the function declara-
tion.

81

Eloquence Graphical User Interface
On-line Help

The EqHelpViewFile Function

You apply this function to view the contents of any text file using the Netscape
WWW browser.

The configuration itemFileBaseURL defines the base location of the files to be
viewed. This is similar to theHelpBaseURL configuration item.

On the HP-UX system, you defineFileBaseURL in section[dmsrv] of the eloq.ini
file on the HP-UX system.

On the PC platform, you defineFileBaseURL in section[dlgsrv] of the eloq.ini
file on the PC.

Example:

 FileBaseURL = http://www/application/documents/

You can think ofFileBaseURL as the root directory containing any files related to
a specific Eloquence application.

NOTE: Please refer to chaptersConfiguring Eloquence, sectionCustomize the ELOQ.INI File on
the HP-UX System, Section [dlgsrv] andConfiguring Eloquence, sectionCustomize the
ELOQ.INI File on the PC Platform, Section [dlgsrv] for details.

TheEqHelpViewFile function expects astring argument which is appended to
FileBaseURL to compose the final document address.

Example:

 DLG CALL FUNCTION "EqHelpViewFile"("order.lst")

This will invoke Netscape, which in turn will load the following document:

 http://www/application/documents/order.lst

This function must be declared in your Dialog Manager dialog file if you want to
apply it, the declaration should look like:

 function boolean EqHelpViewFile(string input);

Please refer to the filedefaults.eq , where you will find the function declara-
tion.

82

Eloquence Graphical User Interface
On-line Help

NOTE: If you want to arrange your file hierarchy in the local file system rather than on a HTTP
server, you simply define a differentFileBaseURL, e.g.:
 FileBaseURL = file://opt/application/documents/

The EqHelpManPage Function

You apply this function to view the contents of any manual page using the
Netscape WWW browser.

The configuration itemManBaseURL should be set to the location of aCGI script
providing the functionality to retrieve a manual page using a search expression.

On the HP-UX system, you defineManBaseURL in section[dmsrv] of the
eloq.ini file on the HP-UX system.

On the PC platform, you defineManBaseURL in section[dlgsrv] of the eloq.ini
file on the PC.

Example:

 ManBaseURL = http://www/cgi-bin/man2html

NOTE: Please refer to chaptersConfiguring Eloquence, sectionCustomize the ELOQ.INI File on
the HP-UX System, Section [dlgsrv] andConfiguring Eloquence, sectionCustomize the
ELOQ.INI File on the PC Platform, Section [dlgsrv] for details.

TheEqHelpManPage function expects astring argument which is appended to
ManBaseURL to compose the final man page address.

Example:

 DLG CALL FUNCTION "EqHelpManPage"("?man")

This will invoke Netscape, which in turn will load the following document:

 http://www/cgi-bin/man2html?man

This function must be declared in your Dialog Manager dialog file if you want to
apply it, the declaration should look like:

 function boolean EqHelpManPage(string input);

Please refer to the file/opt/eloquence/lib/defaults.eq , where you will
find the function declaration.

83

Eloquence Graphical User Interface
The Remote Exec Utility

The Remote Exec Utility

TheEQEXEC utility is provided for the Microsoft Windows platform. It makes it
possible to start HP-UX processes on a remote host using therexec protocol.

The EQEXEC remote exec utility is available on the 32bit Windows environment
and is now named EQEXEC32. It uses the eqexec.ini configuration file located in
the Windows installation directory.

EQEXEC enables you to start your HP-UX application without the necessity to
login to your favorite HP-UX box while you don’t get in contact with the operat
ing system at all.

EQEXEC enables you to start your HP-UX application without the necessity to
login to your favorite HP-UX box while you don’t get in contact with the operat-
ing system at all.

EQEXEC is designed for end users to start their Eloquence applications on a PC
running Microsoft Windows using theDLGSRV network dialog server. This way,
Eloquence applications behave like native Microsoft Windows programs.

Probably,EQEXEC may be used in a more general way since therexec protocol
enables you to start any process on any remote host running a remote execution
server.

NOTE: For details about therexec protocol please refer to therexecd(1m) HP-UX manual page.

EQEXEC Features

TheEQEXEC utility

• is fully localizable by changing a configuration file
• supports multiple hosts, applications and users
• provides a command line per application (up to 500 characters)
• has a built-in configuration screen, so it is easy to use and maintain
• includes a log window for debugging purposes

As an additional benefit, if your Eloquence application has been migrated to Dia-
log Manager client-server dialogs, you don't need a HP-UX user license (since the
HP-UX system is used as an application server only) and a costly terminal emula-
tor such as Reflection in order to start your application.

84

Eloquence Graphical User Interface
The Remote Exec Utility

The EQEXEC.INI File

TheEQEXEC utility relies on the eqexec.ini configuration file located in yourWIN-
DOWS directory. Part of this file is automatically maintained byEQEXEC, part of it
can be manually configured. The eqexec.ini file is fully documented and contains
a complete description of the various configuration items.

Manual configuration includes

• the common runtime behavior (e.g. if a password is required generally)
• customizing the dialog caption and control element titles
• customizing the program error messages

Using EQEXEC

EQEXEC pops up with a dialog. It contains the following control elements:

Application: Select the application you want to execute.

NOTE: Theapplication is saved for the next time you useEQEXEC.

Username: Enter your user name to log in on the remote host.

NOTE: Theusername is saved for the next time you useEQEXEC.

Password: Enter your password to log in on the remote host.

NOTE: Thepassword is not saved for the next time you useEQEXEC.
It depends on thePasswordRequired configuration item in section[common] of the
eqexec.ini configuration file if a password is required generally.

Log output: Check this option to show the host response in a log window.
This is useful if a command does not execute as expected.

NOTE: The state of thelog output check box is saved for the next time you useEQEXEC.

OK: Push this button to execute the selected application.

Cancel: Push this button to leaveEQEXEC.

Settings: Push this button to open the configuration sub-dialog.

The configuration sub-dialog enables you to maintain the application list. It con-
tains the following control elements:

Description: This is the application title to be displayed in the list.

Host: This is the name of the remote host where the application shall
be executed.

85

Eloquence Graphical User Interface
The Remote Exec Utility

NOTE: You should provide the appropriate entry in yourHOSTS file. The location of yourHOSTS
file depends on your networking software.

Command: This is the command line to be executed on the remote host.

NOTE: Is is recommended to redirectstandard input to thenull device, this is done by appending
</dev/null to the command line.
When the command is executed as expected, you should also redirectstandard output and
standard error to thenull device since this reduces the network traffic. This is done by
appending>/dev/null 2>&1 to the command line.

Add: Push this button to put your changes to the application list.

Delete: Push this button to delete the selected entry from the applica-
tion list.

NOTE: Since every control element title can be customized, the titles in this description may differ
from the currentEQEXEC settings.

86

Eloquence Graphical User Interface
The CVDLG Utility

The CVDLG Utility

CVDLG is a HP-UX utility which converts Eloquence dialog files into Dialog Man-
ager dialog files.

Eloquence dialog files, if accessed by a driver, will be converted temporarily into
Dialog Manager format each time a dialog is loaded. However, this is a time con-
suming process and you may also wish to optimize the dialog layout using the
Dialog Manager graphical editor. You may useCVDLG to convert Eloquence dia-
log files into Dialog Manager dialog files.

Dialog File Name Extensions

The following file name extensions are recommended:

.dlg Eloquence dialog file

.idm Dialog Manager dialog file

.idc compiled Dialog Manager dialog file

The default file name extensions may be re-defined using the eloq.ini file.

NOTE: Compiled Dialog Manager dialog files are platform specific.

Using CVDLG

CVDLG is used with the following command line:

cvdlg [arguments] outfile infile [infile ...]

outfile: This specifies the destination file name. An extension of.idm
is recommended.

infile: This lists the Eloquence dialog files to be converted. At least
oneinfile must be specified.

The optionalarguments must be supplied in the following order:

1 -help
Show program usage.

2 -debug n
Set the internalCVDLG debug level ton.

3 -driver driver arguments
Specify the dialog driver and additional driver arguments. This is equivalent to the pa-
rameter supplied to theDLG SET ".driver" statement. Please refer to sectionEl-
oquence Dialog Drivers prior in this chapter.

87

Eloquence Graphical User Interface
The CVDLG Utility

Example:
 -driver "motif myoptions -IDMtracefile /tmp/idmtrace"

This will start the motif driver, specifying theuser-defined section named[myoptions]
and an additional Dialog Manager argument which creates a trace file for debugging
purposes.

NOTE: If -driver is not specified, theDRIVER environment variable is used instead. This
variable should be set todriver arguments , e.g.:
 DRIVER = "motif myoptions -IDMtracefile /tmp/idmtrace"

NOTE: CVDLG uses Eloquence drivers to convert dialog files.
If using the network driver, the output files will be created on the system running the
DLGSRV utility. So the destination file name must be specified according to the remote
system requirements. If you specify a relative file name, the target file will be created
relative to the directory specified in the eloq.ini file.

CVDLG Examples

Example 1:

 cvdlg -driver "motif myoptions" sample.idm sample.dlg

This example will convert a Eloquence dialog file namedsample.dlg into a Dialog
Manager dialog file namedsample.idm using the motif driver. Theuser-defined
section named[myoptions] is used for driver configuration.

Example 2:

 cvdlg -driver @client c:\\dlg\\sample.idm c:\\dlg\\sample.dlg

This example will convert a Eloquence dialog file namedsample.dlg into a Dialog
Manager dialog file namedsample.idm. The network dialog driverDLGSRV is
used to perform this conversion, running on the remote PC namedclient.

Any backslash path separator character must be doubled since the shell uses a
backslash as an escape character. You may use the regular HP-UXslash character
instead, it will be mapped tobackslash by the dialog driver.

The Conversion Process

A Eloquence dialog file is translated in a sequence ofDLG NEW andDLG SET
statements which are executed by the driver process.

The following sequence of Eloquence statements reflect the internal operation of
CVDLG:

 10 DLG SET ".driver","motif"
 20 DLG LOAD "sample.dlg"

88

Eloquence Graphical User Interface
The CVDLG Utility

 30 DLG CALL RULE "EqSaveDialog","EqDialog"("sample.idm")
 40 DLG STOP

The following example script will show a possible usage of theCVDLG utility
using the motif driver. It will convert.dlg files to.idm files. The dialog files are
afterwards post-processed bysed (the dialogs are renamed in this step).

If no file names are given on command line, this script will convert all.dlg files
in the current directory which have no corresponding.idm files. If any file name
is specified on the command line, the corresponding.idm files are overwritten.

#! /bin/sh
echo "mkidm.sh"
force=n
defaults=defaults.eq

if [-z "$DISPLAY"]
then
 echo "Motif display required!"
 exit 1
fi

if [$# != 0]
then
 list=$*
 force=y
else
 list="*.dlg"
fi

for i in $list
do
 base=‘basename $i .dlg‘
 idm=$base.idm
 idc=$base.idc

 if [! -f $idm -o $force = y]
 then
 echo "\\n$i -> $idm"

 rm -f $idm $idc

 /usr/eloquence/cvdlg -driver motif +arg $defaults $idm $i
 if [$? != 0]
 then
 echo "failed!!"
 exit
 fi

 sed -e "s/EqDialog/Dlg_$base/g" %<$idm >$$
 if [$? != 0]
 then
 echo "sed failed!!"
 exit
 fi
 mv $$ $idm
 fi
done

89

Eloquence Graphical User Interface
Advanced Dialog Manager usage

Advanced Dialog Manager usage

Overview

In some cases it is necessary to use some not standard functions, to implement
certain tasks. The following specials perhaps can help you to manage it.

Accessing Dialog Manager Variables

Dialog Manager variables may be set using theDLG SET and retrieved using the
DLG GET statement. The dialog name, the variable name and the.value attribute
must be specified.

Example:

 dialog YourDialog
 ...
 variable string StrVal;
 variable integer IntVal;

You may access these variables from Eloquence using the following statements:

 DLG GET "YourDialog.StrVal!value",A$

This will retrieve the value of the Dialog Manager variableStrVal into the Elo-
quence variableA$.

 DLG SET "YourDialog.IntVal!value",123

This will set the Dialog Manager variableIntVal to the constant value123.

NOTE: You should use the exclamation mark (’! ’) to delimit variable path and attribute because
native Dialog Manager attributes are accessed. Please refer toAccessing Dialog Manager
Objects later in this chapter.

NOTE: Please refer to theISA Dialog Manager documentation for details.

90

Eloquence Graphical User Interface
Advanced Dialog Manager usage

Dialog Manager Records

Eloquence supports access to Dialog Managerrecord objects.

Dialog manager record objects are the equivalent ofstructures in C language and
may be defined globally to the dialog or locally to any object.

This is an efficient method to exchange multiple data with Dialog Manager at
once. Using the EloquenceXPACK andXUNPACK statements, you may link Elo-
quence variables to Dialog Manager record members.

Dialog Manager record members may either be defined as shadow objects, such
that each access to a record member will affect the associated object attribute, or
they may contain data which may be used in Dialog Manager rules or functions.

TheDLG SET andDLG GET statement mappings of the dialog driver have been
enhanced to support Dialog Manager record objects.

The DLG SET Statement

TheDLG SET statement may be used to transfer a buffer, packed by theXPACK
statement, into equivalent record members of a Dialog Manager record object.

 DLG SET "Record.@",Buf$

NOTE: The.@ attribute must be specified.

Example:

 window CusWin
 {
 ...
 child record CusRec
 {
 string Cus_no shadows CusWin.Cus_number.content;
 string Cus_name shadows CusWin.Cus_name.content;
 boolean Cus_flag shadows CusWin.active;
 ...
 }
 }

 Cus_no$="1234"
 Cus_name$="Customer Name"
 Cus_flag=1
 XPACK Buf$ FROM Cus_no$,Cus_name$,Cus_flag
 DLG SET "CusWin.CusRec.@",Buf$

This will transfer the Eloquence variablesCus_no$, Cus_name$ andCus_flag
into the Dialog Manager record objectCusWin.CusRec.

The DLG GET Statement

91

Eloquence Graphical User Interface
Advanced Dialog Manager usage

TheDLG GET statement may be used to transfer the contents of a Dialog Manager
record object into Eloquence program variables.

If a .@ attribute is specified, all record members are transferred. If a member
name is specified, only the given record member is transferred:

 DLG GET "Record.@",Buf$

This transfers all members ofRecord into Buf$.

 DLG GET "Record.Array",Buf$

This transfers all elements ofRecord memberArray into Buf$.

 DLG GET "Record.Array[1]",Buf$

This transfers the first element ofRecord memberArray into Buf$.

Example:

 DLG GET "CusWin.CusRec.@",Buf$
 XUNPACK Buf$

This will transfer all members of the Dialog Manager record objectCusWin.Cus-
Rec into equivalent Eloquence program variables.

 DLG GET "CusWin.CusRec.Cus_flag",Buf$
 XUNPACK Buf$

This will transfer the fieldCusWin.CusRec.Cus_flag into the Eloquence program
variableCus_flag.

Programming Considerations

In order to use Dialog Manager record objects, the following considerations
should be followed:

• The Dialog Manager does not support floating point variables.

• All record member names must be valid Eloquence variable names.

• The Dialog Manager record members must have the appropriate type. You may use the
Dialog Managerboolean, integer andstring data types.

• The Dialog Manager record members and Eloquence program variables should have an
equivalent type.

• While it is possible to transfer Eloquence numeric variables into Dialog Managerstring
record members, the opposite is not possible.

However, there is a workaround implemented into Eloquence which allows to over-
come this limitation:

92

Eloquence Graphical User Interface
Advanced Dialog Manager usage

A Dialog Manager record member with a trailing ’N’ (uppercase) appended to its
name is considered numeric, regardless of its real data type. The corresponding Elo-
quence variable name doesnot include the trailing ’N’. This way, numeric data can be
transferred from any Dialog Manager record member data type into Eloquence
numeric variables.

Example:

window MyWin
{
 child record MyRec
 {
 string Num_strN "123";
 }
}

INTEGER Num_str
DLG GET "MyWin.MyRec.@",Buf$
XUNPACK Buf$

This will transfer the numeric value123 from the Dialog Manager record member
MyWin.MyRec.Num_strN (string data type) into the Eloquence variableNum_str
(INTEGER data type).

NOTE: If such Dialog Manager record members contain non-numeric text,0 (zero) is transferred
into the corresponding Eloquence variables.

Dialog Manager Rules and Functions

Eloquence provides two statements which enable you to call Dialog Manager
rules andfunctions.

Rules

Dialog Managerrules are implemented using the Dialog Manager script language
and are stored in the dialog file. This makes it possible to provide a task-oriented
interface to dialogs without having to care about the bits and pieces.

By writing your own rules you actually extend the dialog server functionality. The
DLG CALL RULE statement allows you to trigger such extensions:

DLG CALL RULE "Rule","Object" [(arg,arg ...)] [,Retvar[$]] [;Err]

Example:

 window MyWindow
 {
 ...
 child image MyImage
 {
 ...

93

Eloquence Graphical User Interface
Advanced Dialog Manager usage

 .text "Image Name";
 .picture Default;
 }
 ...
 }
 ...
 rule void LoadGif(string Gif input, string Name input)
 {
 this.picture := Gif;
 this.text := Name;
 }

 DLG CALL RULE "LoadGif","MyImage"("sample.gif","Sample Image")

This will trigger theLoadGif() rule. The object which the rule is applied to
(this) is MyImage, the GIF image to be loaded issample.gif and the image title is
set to“Sample Image”.

TheDLG CALL RULE statement is mapped to aDM_CallRule() Dialog Man-
ager function call.

If a return variable is present, the value returned by the rule will be assigned to it.
If no return variable is specified, the return value will be ignored.

If the error return variable is present, no runtime error is returned, but the error
variable is set with the error number.

NOTE: In the example above, the GIF file will be read from the local system (where the dialog
server is executed). If you are using the network dialog server on the PC platform, this file
is expected on the PC. This behavior is subject to change in a subsequent release.

Functions

Dialog Managerfunctions are implemented inC language and are linked to the
dialog server executable. The functions are bound to the Dialog Manager using
theDM_BindFunctions() Dialog Manager function. In order to use such func-
tions they must be declared in the dialog file.

By writing your own functions you actually extend the dialog server functionality.
TheDLG CALL FUNCTION statement allows you to trigger such extensions:

DLG CALL FUNCTION "Function" [(arg,arg ...)] [,Retvar[$]] [;Err]

Example:

 function boolean EqHelpViewFile(string input);

 DLG CALL FUNCTION "HelpViewFile"("sample.txt")

94

Eloquence Graphical User Interface
Advanced Dialog Manager usage

This will trigger theHelpViewFile() function. The file to be viewed issam-
ple.txt.

TheDLG CALL FUNCTION statement is mapped to aDM_CallFunction() Dia-
log Manager function call. The maximum number of arguments is 8.

If a return variable is present, the value returned by the rule will be assigned to it.
If no return variable is specified, the return value will be ignored.

If the error return variable is present, no runtime error is returned, but the error
variable is set with the error number. If no dialog server is active, an error 1004 is
returned.

NOTE: Please refer to sectionCustomizing the Dialog Server prior in this chapter for details about
extending the dialog server.

Programming Notes

This section covers solutions to common problems concerning Dialog Manager
programming issues.

Avoiding Edit Text Exit Rule

Problem:on EDITTEXT deselect is triggered atPUSHBUTTON select .

If a pushbutton or image button is selected, this will involve a focus change which
will trigger anEDITTEXT deselect rule. As a result, it is required to select the
pushbutton twice.

This behavior can also result in a situation where a “Cancel”pushbutton would be
unusable if anEDITTEXT deselect rule performs a field validation and re-sets
the focus on itself again.

This problem can be solved in the following manner:

1 Initialize aninteger variable in yourpushbutton object or in the object model or default.
Do this in every object (model, default) that should have “Cancel”pushbutton charac-
teristics, e.g.:

 model pushbutton Cancel_btn
 {
 ...
 integer EqRuleOverride := 1;
 }

2 Change the object (model, default) rule that normally is triggeredon EDITTEXT de-
select .

If this rule is e.g.:

95

Eloquence Graphical User Interface
Advanced Dialog Manager usage

 on EDITTEXT deselect
 {
 if this.EqRule then
 EqExitEventLoop(this, this.EqRule);
 endif
 }

Change this rule to:

 on EDITTEXT deselect
 {
 variable integer RuleOverride := 0;
 if (typeof(this.window.focus.EqRuleOverride)=integer) then
 RuleOverride := this.window.focus.EqRuleOverride;
 endif
 if RuleOverride=0 then
 if this.EqRule then
 EqExitEventLoop(this, this.EqRule);
 endif
 endif
 }

The basic idea is to obtain the newly focused object (this.window.focus which
might be the “Cancel”pushbutton object) and check if this object has anEqRule-
Override attribute. If this is true andEqRuleOverride is set theEqExitEvent-
Loop() function will not be triggered and theEDITTEXT deselect rule will
not perform any action.

Setting the Focus to Microsoft Windows Radio Button Object

Previously, aDLG SET "Radiobutton.focus",1 statement alwaysactivated
the chosenradiobutton when applied with the Microsoft Windows network dialog
server. This behavior sometimes had side effects if a rule was associated with the
activation of thisradiobutton and theradiobutton had not previously been
selected.

The current implementation sets the focus to thecurrently selected radiobutton
within the same group whenever aDLG SET statement is used as shown above.
Since the focusedradiobutton has been selected previously, any activation rule
will not be triggered.

To achieve the former behavior, you can access thenative Dialog Manager
attribute, e.g.DLG SET "Radiobutton!focus",1

96

Eloquence Graphical User Interface
Advanced Dialog Manager usage

97

C
Checkbox 23
cvdlg 86
D
Dialog 18
DLG statements 36

DLG DEL 37
DLG DO 38
DLG DRAW 38
DLG GET 37
DLG HELP 38
DLG LOAD 36
DLG NEW 36
DLG SET 37
DLG STOP 36

dlgsrv 64
dlgsrv32 67
E
Edittext 27
G
Groupbox 20
H
help dialog 48
Help subsystem 45
helpfile format 47
Helptext 34
L
Listbox 31
O
Object attributes 12
Object Classes

Dialog 18
Object classes 18

CheckBox 23
EditText 27
GroupBox 20
HelpText 33, 34
ListBox 31
PushButton 22

98

RadioButton 25
StaticText 21

Object Path 10
P
Pushbutton 22
R
Radiobutton 25
Reference Section 56
runsrv 63
runsrv32 67
S
Statictext 21

99

C
cvdlg 86
D
DLG DEL 37
DLG DO 38
DLG DRAW 38
DLG GET 37
DLG HELP 38
DLG LOAD 36
DLG NEW 36
DLG SET 37
DLG STOP 36
dlgsrv 64
dlgsrv32 67
R
runsrv 63
runsrv32 67

